Spectra of finite symplectic and orthogonal groups
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 33-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group $G$ is the set of the orders of elements of $G$. In the present article, we obtain an arithmetical description of the spectra of finite symplectic and orthogonal groups. In particular, we describe the spectra of finite simple groups in these two classes.
@article{MT_2010_13_2_a2,
     author = {A. A. Buturlakin},
     title = {Spectra of finite symplectic and orthogonal groups},
     journal = {Matemati\v{c}eskie trudy},
     pages = {33--83},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a2/}
}
TY  - JOUR
AU  - A. A. Buturlakin
TI  - Spectra of finite symplectic and orthogonal groups
JO  - Matematičeskie trudy
PY  - 2010
SP  - 33
EP  - 83
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_2_a2/
LA  - ru
ID  - MT_2010_13_2_a2
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%T Spectra of finite symplectic and orthogonal groups
%J Matematičeskie trudy
%D 2010
%P 33-83
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_2_a2/
%G ru
%F MT_2010_13_2_a2
A. A. Buturlakin. Spectra of finite symplectic and orthogonal groups. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 33-83. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a2/

[1] Buturlakin A. A., “Spektry konechnykh lineinykh i unitarnykh grupp”, Algebra i logika, 47:2 (2008), 157–173 | MR | Zbl

[2] Buturlakin A. A., Grechkoseeva M. A., “Tsiklicheskoe stroenie maksimalnykh torov v konechnykh klassicheskikh gruppakh”, Algebra i logika, 46:2 (2007), 129–156 | MR | Zbl

[3] Aschbacher M., Finite Group Theory, Cambridge Studies in Advanced Mathematics, 10, Cambridge University Press, Cambridge, 1986 | MR | Zbl

[4] Carter R. W., Simple Groups of Lie Type, Pure and Applied Mathematics, 28, John Wiley and Sons, London–New York–Sydney, 1972 | MR

[5] Carter R. W., “Centralizers of semisimple elements in finite groups of Lie type”, Proc. London Math. Soc. (3), 37:3 (1978), 491–507 | DOI | MR | Zbl

[6] Carter R. W., “Centralizers of semisimple elements in the finite classical groups”, Proc. London Math. Soc. (3), 42:1 (1981), 1–41 | DOI | MR | Zbl

[7] Carter R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley and Sons, New York, 1985 | MR | Zbl

[8] Steinberg R., Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc., 80, Amer. Math. Soc., Providence, RI, 1968 | MR

[9] Testerman D. M., “$A_1$-Type overgroups of elements of order $p$ in semisimple algebraic groups and the associated finite groups”, J. Algebra, 177:1 (1995), 34–76 | DOI | MR | Zbl