On constant mean curvature surfaces in the Heisenberg group
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the theory of surfaces of constant mean curvature in the three-dimensional Heisenberg group. It is proved that each surface of such a kind locally corresponds to some solution of the system of a sine-Gordon type equation and a first order partial differential equation.
@article{MT_2010_13_2_a0,
     author = {D. A. Berdinsky},
     title = {On constant mean curvature surfaces in the {Heisenberg} group},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a0/}
}
TY  - JOUR
AU  - D. A. Berdinsky
TI  - On constant mean curvature surfaces in the Heisenberg group
JO  - Matematičeskie trudy
PY  - 2010
SP  - 3
EP  - 9
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_2_a0/
LA  - ru
ID  - MT_2010_13_2_a0
ER  - 
%0 Journal Article
%A D. A. Berdinsky
%T On constant mean curvature surfaces in the Heisenberg group
%J Matematičeskie trudy
%D 2010
%P 3-9
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_2_a0/
%G ru
%F MT_2010_13_2_a0
D. A. Berdinsky. On constant mean curvature surfaces in the Heisenberg group. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 3-9. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a0/