On constant mean curvature surfaces in the Heisenberg group
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
This work is devoted to the theory of surfaces of constant mean curvature in the three-dimensional Heisenberg group. It is proved that each surface of such a kind locally corresponds to some solution of the system of a sine-Gordon type equation and a first order partial differential equation.
@article{MT_2010_13_2_a0,
author = {D. A. Berdinsky},
title = {On constant mean curvature surfaces in the {Heisenberg} group},
journal = {Matemati\v{c}eskie trudy},
pages = {3--9},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a0/}
}
D. A. Berdinsky. On constant mean curvature surfaces in the Heisenberg group. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 3-9. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a0/