On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 186-211
Voir la notice de l'article provenant de la source Math-Net.Ru
The Ricci curvature of solvable metric Lie algebras is studied. In particular, we prove that the Ricci operator of any metric nonunimodular solvable Lie algebra of dimension not exceeding 6 has at least two negative eigenvalues, that generalizes the known results.
@article{MT_2010_13_1_a8,
author = {M. S. Chebarykov},
title = {On the {Ricci} curvature of nonunimodular solvable metric {Lie} algebras of small dimension},
journal = {Matemati\v{c}eskie trudy},
pages = {186--211},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/}
}
M. S. Chebarykov. On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 186-211. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/