On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 186-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Ricci curvature of solvable metric Lie algebras is studied. In particular, we prove that the Ricci operator of any metric nonunimodular solvable Lie algebra of dimension not exceeding 6 has at least two negative eigenvalues, that generalizes the known results.
@article{MT_2010_13_1_a8,
     author = {M. S. Chebarykov},
     title = {On the {Ricci} curvature of nonunimodular solvable metric {Lie} algebras of small dimension},
     journal = {Matemati\v{c}eskie trudy},
     pages = {186--211},
     year = {2010},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/}
}
TY  - JOUR
AU  - M. S. Chebarykov
TI  - On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension
JO  - Matematičeskie trudy
PY  - 2010
SP  - 186
EP  - 211
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/
LA  - ru
ID  - MT_2010_13_1_a8
ER  - 
%0 Journal Article
%A M. S. Chebarykov
%T On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension
%J Matematičeskie trudy
%D 2010
%P 186-211
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/
%G ru
%F MT_2010_13_1_a8
M. S. Chebarykov. On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 186-211. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/

[1] Alekseevskii D. V., “Odnorodnye rimanovy prostranstva otritsatelnoi krivizny”, Mat. sb., 96(138):1 (1975), 93–117 | MR | Zbl

[2] Alekseevskii D. V., Kimelfeld B. N., “Struktura odnorodnykh rimanovykh prostranstv s nulevoi kriviznoi Richchi”, Funktsion. analiz i ego pril., 9:2 (1975), 5–11 | MR | Zbl

[3] Balaschenko V. V., Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., Odnorodnye prostranstva: teoriya i prilozheniya, Poligrafist, Khanty-Mansiisk, 2008

[4] Besse A. L., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl

[5] Burbaki N., Gruppy i algebry Li, Mir, M., 1978 | MR

[6] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., “Stroenie grupp i algebr Li”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 41, VINITI, M., 1990, 5–253 | MR | Zbl

[7] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[8] Kremlev A. G., Nikonorov Yu. G., “Signatura krivizny Richchi levoinvariantnykh rimanovykh metrik na chetyrekhmernykh gruppakh Li. Unimodulyarnyi sluchai”, Mat. trudy, 11:2 (2008), 115–147 | MR

[9] Kremlev A. G., Nikonorov Yu. G., “Signatura krivizny Richchi levoinvariantnykh rimanovykh metrik na chetyrekhmernykh gruppakh Li. Neunimodulyarnyi sluchai”, Mat. trudy, 12:1 (2009), 40–116 | MR

[10] Morozov V. V., “Klassifikatsiya nilpotentnykh algebr Li shestogo poryadka”, Izv. vuzov. Matematika, 1958, no. 4(5), 161–171 | MR | Zbl

[11] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. vuzov. Matematika, 1963, no. 1(32), 114–123 | MR | Zbl

[12] Mubarakzyanov G. M., “Klassifikatsiya veschestvennykh struktur algebr Li pyatogo poryadka”, Izv. vuzov. Matematika, 1963, no. 3(34), 99–106 | MR | Zbl

[13] Nikitenko E. V., “O nestandartnykh einshteinovykh rasshireniyakh pyatimernykh metricheskikh nilpotentnykh algebr Li”, Sibirskie elektronnye matematicheskie izvestiya, 3, 2006, 115–136 | MR | Zbl

[14] Nikitenko E. V., Nikonorov Yu. G., “Shestimernye einshteinovy solvmnogoobraziya”, Mat. trudy, 8:1 (2005), 71–121 | MR

[15] Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., “Geometriya odnorodnykh rimanovykh mnogoobrazii”, Sovremennaya matematika i ee prilozheniya, 37, Geometriya (2006), 101–178 | MR

[16] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[17] De Graaf W. A., “Classification of solvable Lie algebras”, Experiment. Math., 14:1 (2005), 15–25 | MR | Zbl

[18] Dotti Miatello I., “Ricci curvature of left-invariant metrics on solvable unimodular Lie groups”, Math. Z., 180:2 (1982), 257–263 | MR | Zbl

[19] Jacobson N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers, New York, 1962 | MR | Zbl

[20] Jensen G., “The scalar curvature of left-invariant Riemannian metrics”, Indiana Univ. Math. J., 20 (1971), 1125–1143 | DOI | MR

[21] Milnor J., “Curvatures of left-invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329 | DOI | MR | Zbl

[22] Patera J., Sharp R. T., Winternitz P., Zassenhaus H., “Invariants of real low dimension Lie algebras”, J. Mathematical Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl