On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 186-211

Voir la notice de l'article provenant de la source Math-Net.Ru

The Ricci curvature of solvable metric Lie algebras is studied. In particular, we prove that the Ricci operator of any metric nonunimodular solvable Lie algebra of dimension not exceeding 6 has at least two negative eigenvalues, that generalizes the known results.
@article{MT_2010_13_1_a8,
     author = {M. S. Chebarykov},
     title = {On the {Ricci} curvature of nonunimodular solvable metric {Lie} algebras of small dimension},
     journal = {Matemati\v{c}eskie trudy},
     pages = {186--211},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/}
}
TY  - JOUR
AU  - M. S. Chebarykov
TI  - On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension
JO  - Matematičeskie trudy
PY  - 2010
SP  - 186
EP  - 211
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/
LA  - ru
ID  - MT_2010_13_1_a8
ER  - 
%0 Journal Article
%A M. S. Chebarykov
%T On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension
%J Matematičeskie trudy
%D 2010
%P 186-211
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/
%G ru
%F MT_2010_13_1_a8
M. S. Chebarykov. On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 186-211. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a8/