Generalized notion of a~trace for von Neumann algebras
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 146-155

Voir la notice de l'article provenant de la source Math-Net.Ru

On a von Neumann algebra $M$, we consider traces with values in the algebra $L^0$ of measurable complex-valued functions. We show that every faithful normal $L^0$-valued trace on $M$ generates an $L^0$-valued metric on the algebra of measurable operators that are affiliated with $M$. Moreover, convergence in this metric coincides with local convergence in measure.
@article{MT_2010_13_1_a5,
     author = {B. S. Zakirov},
     title = {Generalized notion of a~trace for von {Neumann} algebras},
     journal = {Matemati\v{c}eskie trudy},
     pages = {146--155},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a5/}
}
TY  - JOUR
AU  - B. S. Zakirov
TI  - Generalized notion of a~trace for von Neumann algebras
JO  - Matematičeskie trudy
PY  - 2010
SP  - 146
EP  - 155
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a5/
LA  - ru
ID  - MT_2010_13_1_a5
ER  - 
%0 Journal Article
%A B. S. Zakirov
%T Generalized notion of a~trace for von Neumann algebras
%J Matematičeskie trudy
%D 2010
%P 146-155
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a5/
%G ru
%F MT_2010_13_1_a5
B. S. Zakirov. Generalized notion of a~trace for von Neumann algebras. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 146-155. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a5/