An integral representation and boundary behavior of functions defined in a~domain with a~peak
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 23-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an invertible characteristic of boundary behavior of functions in Sobolev spaces defined in a space domain with a vertex of a peak on the boundary.
@article{MT_2010_13_1_a2,
     author = {M. Yu. Vasil'chik and I. M. Pupyshev},
     title = {An integral representation and boundary behavior of functions defined in a~domain with a~peak},
     journal = {Matemati\v{c}eskie trudy},
     pages = {23--62},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a2/}
}
TY  - JOUR
AU  - M. Yu. Vasil'chik
AU  - I. M. Pupyshev
TI  - An integral representation and boundary behavior of functions defined in a~domain with a~peak
JO  - Matematičeskie trudy
PY  - 2010
SP  - 23
EP  - 62
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a2/
LA  - ru
ID  - MT_2010_13_1_a2
ER  - 
%0 Journal Article
%A M. Yu. Vasil'chik
%A I. M. Pupyshev
%T An integral representation and boundary behavior of functions defined in a~domain with a~peak
%J Matematičeskie trudy
%D 2010
%P 23-62
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a2/
%G ru
%F MT_2010_13_1_a2
M. Yu. Vasil'chik; I. M. Pupyshev. An integral representation and boundary behavior of functions defined in a~domain with a~peak. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 23-62. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a2/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[2] Burenkov V. I., “Integralnoe predstavlenie Soboleva i formula Teilora”, Tr. Mat. in-ta im. V. A. Steklova, 131, 1974, 33–38 | MR | Zbl

[3] Vasilchik M. Yu., “O sledakh funktsii iz prostranstv Soboleva $W^1_p$, opredelennykh v oblastyakh s nelipshitsevoi granitsei”, Sovremennye problemy geometrii i analiza, Tr. In-ta matematiki SO AN SSSR, 14, Nauka, Novosibirsk, 1989, 9–45 | MR

[4] Vasilchik M. Yu., “Granichnye svoistva funktsii iz prostranstv Soboleva, opredelennykh v ploskoi oblasti s uglovymi tochkami”, Sib. mat. zhurn., 36:4 (1995), 787–804 | MR | Zbl

[5] Vasilchik M. Yu., “Obratimaya kharakteristika sledov funktsii iz prostranstv Soboleva na kusochno-gladkoi granitse ploskoi oblasti”, Prostranstva Soboleva i smezhnye voprosy analiza, Tr. In-ta matematiki SO RAN, 31, Izd-vo In-ta matematiki, Novosibirsk, 1996, 40–57 | MR

[6] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[7] Mazya V. G., “O funktsiyakh s konechnym integralom Dirikhle v oblasti s vershinoi pika na granitse”, Zap. nauch. seminarov LOMI / Mat. in-t im. V. A. Steklova. Leningr. otd-nie, 126, Nauka, M.–L., 1983, 117–137 | MR

[8] Mazya V. G., Poborchii S. V., “O sledakh funktsii s summiruemym gradientom v oblasti s vershinoi pika na granitse”, Mat. zametki, 45:1 (1989), 57–65 | MR | Zbl

[9] Mazya V. G., Poborchii S. V., “Sledy funktsii iz prostranstv Soboleva na granitse oblasti s pikom”, Sovremennye problemy geometrii i analiza, Tr. In-ta matematiki SO AN SSSR, 14, Nauka, Novosibirsk, 1989, 182–208 | MR

[10] Mazya V. G., Poborchii S. V., Teoremy vlozheniya i prodolzheniya dlya funktsii v nelipshitsevykh oblastyakh, Izd-vo S.-Peterburgskogo un-ta, SPb., 2006

[11] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[12] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[13] Jonsson A., “The trace of potentials on general sets”, Ark. Mat., 17:1 (1979), 1–18 | DOI | MR | Zbl

[14] Jonsson A., Wallin H. A., “A Whitney extension theorem in $L_p$ and Besov spaces”, Ann. Inst. Fourier (Grenoble), 28:1 (1978), 139–192 | MR