Derivations on commutative regular algebras
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a regular (in the sense of von Neumann) algebra $\mathcal A$ over an algebraically closed field of characteristic $0$, we describe the linear space $\mathcal D(\mathcal A)$ of all derivations on $\mathcal A$. The description is obtained in terms of algebraically independent elements of $\mathcal A$. In particular, we estimate the dimension of the space $\mathcal D(\mathcal A)$, where $\mathcal A=S[0,1]$ is the algebra of measurable functions on $[0,1]$.
@article{MT_2010_13_1_a0,
     author = {A. F. Ber},
     title = {Derivations on commutative regular algebras},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a0/}
}
TY  - JOUR
AU  - A. F. Ber
TI  - Derivations on commutative regular algebras
JO  - Matematičeskie trudy
PY  - 2010
SP  - 3
EP  - 14
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a0/
LA  - ru
ID  - MT_2010_13_1_a0
ER  - 
%0 Journal Article
%A A. F. Ber
%T Derivations on commutative regular algebras
%J Matematičeskie trudy
%D 2010
%P 3-14
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a0/
%G ru
%F MT_2010_13_1_a0
A. F. Ber. Derivations on commutative regular algebras. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a0/

[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[2] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR

[3] Klifford A. N., Preston G. B., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972 | Zbl

[4] Kusraev A. G., “Avtomorfizmy i differentsirovaniya v rasshirennoi kompleksnoi $f$-algebre”, Sib. mat. zhurn., 47:1 (2006), 97–107 | MR | Zbl

[5] Skornyakov L. A., Dedekindovy struktury s dopolneniyami i regulyarnye koltsa, Fizmatgiz, M., 1961 | MR

[6] Albeverio S., Ayupov Sh. A., Kudaybergenov K. K., “Structure of derivations on various algebras of measurable operators for type I von Neumann algebras”, J. Funct. Anal., 256:9 (2009), 2917–2943 | DOI | MR | Zbl

[7] Ber A. F., Chilin V. I., Sukochev F. A., “Non-trivial derivations on commutative regular algebras”, Extracta Math., 21:2 (2006), 107–147 | MR | Zbl

[8] Bratteli O., Robinson D. W., Operator Algebras and Quantum Statistical Mechanics, v. 1, Springer-Verlag, New York, 1979 | MR | Zbl

[9] Goodearl K. R., Von Neumann Regular Rings, Pitman, Boston, Mass.–London, 1979 | MR | Zbl

[10] Sakai S., Operator Algebras in Dynamical Systems. The Theory of Unbounded Derivations in $C^*$-algebras, Cambridge University Press, Cambridge, 1991 | MR | Zbl