Derivations on commutative regular algebras
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

For a regular (in the sense of von Neumann) algebra $\mathcal A$ over an algebraically closed field of characteristic $0$, we describe the linear space $\mathcal D(\mathcal A)$ of all derivations on $\mathcal A$. The description is obtained in terms of algebraically independent elements of $\mathcal A$. In particular, we estimate the dimension of the space $\mathcal D(\mathcal A)$, where $\mathcal A=S[0,1]$ is the algebra of measurable functions on $[0,1]$.
@article{MT_2010_13_1_a0,
     author = {A. F. Ber},
     title = {Derivations on commutative regular algebras},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a0/}
}
TY  - JOUR
AU  - A. F. Ber
TI  - Derivations on commutative regular algebras
JO  - Matematičeskie trudy
PY  - 2010
SP  - 3
EP  - 14
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a0/
LA  - ru
ID  - MT_2010_13_1_a0
ER  - 
%0 Journal Article
%A A. F. Ber
%T Derivations on commutative regular algebras
%J Matematičeskie trudy
%D 2010
%P 3-14
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a0/
%G ru
%F MT_2010_13_1_a0
A. F. Ber. Derivations on commutative regular algebras. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a0/