Geometric scales for varieties of algebras and quasi-identities
Matematičeskie trudy, Tome 12 (2009) no. 2, pp. 160-169

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a preorder for universal algebras with respect to their geometries. This naturally leads to the notion of the geometric scale for a variety of algebras. We investigate connections between the introduced relation and infinite quasi-identities that hold in algebras, as well as other properties of the relation and the scale.
@article{MT_2009_12_2_a7,
     author = {A. G. Pinus},
     title = {Geometric scales for varieties of algebras and quasi-identities},
     journal = {Matemati\v{c}eskie trudy},
     pages = {160--169},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2009_12_2_a7/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Geometric scales for varieties of algebras and quasi-identities
JO  - Matematičeskie trudy
PY  - 2009
SP  - 160
EP  - 169
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2009_12_2_a7/
LA  - ru
ID  - MT_2009_12_2_a7
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Geometric scales for varieties of algebras and quasi-identities
%J Matematičeskie trudy
%D 2009
%P 160-169
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2009_12_2_a7/
%G ru
%F MT_2009_12_2_a7
A. G. Pinus. Geometric scales for varieties of algebras and quasi-identities. Matematičeskie trudy, Tome 12 (2009) no. 2, pp. 160-169. http://geodesic.mathdoc.fr/item/MT_2009_12_2_a7/