Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2009_12_2_a7, author = {A. G. Pinus}, title = {Geometric scales for varieties of algebras and quasi-identities}, journal = {Matemati\v{c}eskie trudy}, pages = {160--169}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2009_12_2_a7/} }
A. G. Pinus. Geometric scales for varieties of algebras and quasi-identities. Matematičeskie trudy, Tome 12 (2009) no. 2, pp. 160-169. http://geodesic.mathdoc.fr/item/MT_2009_12_2_a7/
[1] Plotkin B. I., “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248 | MR | Zbl
[2] Plotkin B. I., “Problemy algebry, inspirirovannye universalnoi algebraicheskoi geometriei”, Fundam. i prikl. mat., 10:3 (2004), 181–197 | MR | Zbl
[3] McKenzie R. N., “An algebraic version of categorical equivalence for varieties and more general algebraic categories”, Logic and Algebra (Pontignano, 1994), Lecture Notes in Pure and Appl. Math., 180, Dekker, New-York, 1996, 211–243 | MR | Zbl
[4] Plotkin B., “Varieties of algebras and algebraic varieties. Categories of algebraic varieties”, Siberian Adv. Math., 7:2 (1997), 64–97 | MR | Zbl
[5] Plotkin B., “Algebras with the same (algebraic) geometry”, Proc. Steklov Inst. Math., 242, 2003, 165–196 | MR | Zbl