Cardinalities of definable sets in superstructures over models
Matematičeskie trudy, Tome 12 (2009) no. 2, pp. 97-110
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the notion of a superstructure over a model. This is a generalization of the notion of the hereditarily finite superstructure $\mathbb{HF}(\mathfrak M)$ over a model $\mathfrak M$. We consider the question on cardinalities of definable (interpretable) sets in superstructures over $\lambda$-homogeneous and $\lambda$-saturated models.
@article{MT_2009_12_2_a3,
author = {K. Zh. Kudaibergenov},
title = {Cardinalities of definable sets in superstructures over models},
journal = {Matemati\v{c}eskie trudy},
pages = {97--110},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2009_12_2_a3/}
}
K. Zh. Kudaibergenov. Cardinalities of definable sets in superstructures over models. Matematičeskie trudy, Tome 12 (2009) no. 2, pp. 97-110. http://geodesic.mathdoc.fr/item/MT_2009_12_2_a3/