A criterion for straightening of a~Lipschitz surface in the Lizorkin--Triebel sense.~I
Matematičeskie trudy, Tome 12 (2009) no. 1, pp. 144-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the conditions when the trace of a Lizorkin–Triebel space on a Lipschitz surface coincides with the trace of this space on a hyperplane. A criterion in terms of a dyadic weighted inequality is found for a wide range of indices.
@article{MT_2009_12_1_a5,
     author = {A. I. Parfenov},
     title = {A criterion for straightening of {a~Lipschitz} surface in the {Lizorkin--Triebel} {sense.~I}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {144--204},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2009_12_1_a5/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - A criterion for straightening of a~Lipschitz surface in the Lizorkin--Triebel sense.~I
JO  - Matematičeskie trudy
PY  - 2009
SP  - 144
EP  - 204
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2009_12_1_a5/
LA  - ru
ID  - MT_2009_12_1_a5
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T A criterion for straightening of a~Lipschitz surface in the Lizorkin--Triebel sense.~I
%J Matematičeskie trudy
%D 2009
%P 144-204
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2009_12_1_a5/
%G ru
%F MT_2009_12_1_a5
A. I. Parfenov. A criterion for straightening of a~Lipschitz surface in the Lizorkin--Triebel sense.~I. Matematičeskie trudy, Tome 12 (2009) no. 1, pp. 144-204. http://geodesic.mathdoc.fr/item/MT_2009_12_1_a5/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[2] Brudnyi Yu. A., “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Trudy Mosk. mat. obschestva, 24, 1971, 69–132 | MR | Zbl

[3] Mamedov G. A., “O sledakh funktsii iz anizotropnykh prostranstv Nikolskogo–Besova i Lizorkina–Tribelya na podmnozhestvakh evklidova prostranstva”, Tr. Mat. in-ta im. V. A. Steklova, 194, 1992, 160–178 | MR | Zbl

[4] Parfenov A. I., “Diskretnaya norma na lipshitsevoi poverkhnosti i sobolevskaya raspryamlyaemost granitsy”, Mat. trudy, 10:2 (2007), 163–186 | MR

[5] Parfenov A. I., “Kriterii raspryamlyaemosti lipshitsevoi poverkhnosti po Lizorkinu–Tribelyu. II”, Mat. trudy, 12:2 (2009), 139–159

[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[7] Rychkov V. S., “O teoreme Bui, Palyushinskogo i Teiblsona”, Tr. Mat. in-ta im. V. A. Steklova, 227, 1999, 286–298 | MR | Zbl

[8] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl

[9] Bui H.-Q., Paluszyński M., Taibleson M. H., “A maximal function characterization of weighted Besov–Lipschitz and Triebel–Lizorkin spaces”, Studia Math., 119:3 (1996), 219–246 | MR | Zbl

[10] DeVore R. A., Popov V. A., “Interpolation of Besov spaces”, Trans. Amer. Math. Soc., 305:1 (1988), 397–414 | DOI | MR | Zbl

[11] DeVore R. A., Sharpley R. C., “Maximal functions measuring smoothness”, Mem. Amer. Math. Soc., 47:293 (1984), 1–115 | MR

[12] Farkas W., Johnsen J., Sickel W., “Traces of anisotropic Besov–Lizorkin–Triebel spaces – a complete treatment of the borderline cases”, Math. Bohem., 125:1 (2000), 1–37 | MR | Zbl

[13] Fefferman C., Stein E. M., “Some maximal inequalities”, Amer. J. Math., 93:1 (1971), 107–115 | DOI | MR | Zbl

[14] Frazier M., Jawerth B., “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl

[15] Hedberg L. I., Netrusov Yu., An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation, Mem. Amer. Math. Soc., 188, No 882, 2007 | MR

[16] Jawerth B., “Some observations on Besov and Lizorkin–Triebel spaces”, Math. Scand., 40:1 (1977), 94–104 | MR | Zbl

[17] Jawerth B., “The trace of Sobolev and Besov spaces if $0

1$”, Studia Math., 62:1 (1978), 65–71 | MR | Zbl

[18] Jerison D., Kenig C. E., “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 161–219 | DOI | MR | Zbl

[19] Jonsson A., Wallin H., Function Spaces on Subsets of $\mathbb R^n$, Math. Rep., 2, No 1, 1984 | MR | Zbl

[20] Kamont A., “A discrete characterization of Besov spaces”, Approx. Theory Appl. (N.S.), 13:2 (1997), 63–77 | MR | Zbl

[21] Rychkov V. S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl

[22] Saka K., “The trace theorem for Triebel–Lizorkin spaces and Besov spaces on certain fractal sets. I: The Restriction Theorem”, Mem. College Ed. Akita Univ. Natur. Sci., 48 (1995), 1–17 | MR | Zbl

[23] Saka K., “The trace theorem for Triebel–Lizorkin spaces and Besov spaces on certain fractal sets. II: The Extension Theorem”, Mem. College Ed. Akita Univ. Natur. Sci., 49 (1996), 1–27 | MR | Zbl

[24] Seeger A., “A note on Triebel–Lizorkin spaces”, Approximation and Function Spaces, Banach Center Publ., 22, PWN Polish Sci. Publ., Warsaw, 1989, 391–400 | MR

[25] Triebel H., Theory of Function Spaces, II, Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, etc., 1992 | MR | Zbl