Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2009_12_1_a5, author = {A. I. Parfenov}, title = {A criterion for straightening of {a~Lipschitz} surface in the {Lizorkin--Triebel} {sense.~I}}, journal = {Matemati\v{c}eskie trudy}, pages = {144--204}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2009_12_1_a5/} }
A. I. Parfenov. A criterion for straightening of a~Lipschitz surface in the Lizorkin--Triebel sense.~I. Matematičeskie trudy, Tome 12 (2009) no. 1, pp. 144-204. http://geodesic.mathdoc.fr/item/MT_2009_12_1_a5/
[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[2] Brudnyi Yu. A., “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Trudy Mosk. mat. obschestva, 24, 1971, 69–132 | MR | Zbl
[3] Mamedov G. A., “O sledakh funktsii iz anizotropnykh prostranstv Nikolskogo–Besova i Lizorkina–Tribelya na podmnozhestvakh evklidova prostranstva”, Tr. Mat. in-ta im. V. A. Steklova, 194, 1992, 160–178 | MR | Zbl
[4] Parfenov A. I., “Diskretnaya norma na lipshitsevoi poverkhnosti i sobolevskaya raspryamlyaemost granitsy”, Mat. trudy, 10:2 (2007), 163–186 | MR
[5] Parfenov A. I., “Kriterii raspryamlyaemosti lipshitsevoi poverkhnosti po Lizorkinu–Tribelyu. II”, Mat. trudy, 12:2 (2009), 139–159
[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[7] Rychkov V. S., “O teoreme Bui, Palyushinskogo i Teiblsona”, Tr. Mat. in-ta im. V. A. Steklova, 227, 1999, 286–298 | MR | Zbl
[8] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl
[9] Bui H.-Q., Paluszyński M., Taibleson M. H., “A maximal function characterization of weighted Besov–Lipschitz and Triebel–Lizorkin spaces”, Studia Math., 119:3 (1996), 219–246 | MR | Zbl
[10] DeVore R. A., Popov V. A., “Interpolation of Besov spaces”, Trans. Amer. Math. Soc., 305:1 (1988), 397–414 | DOI | MR | Zbl
[11] DeVore R. A., Sharpley R. C., “Maximal functions measuring smoothness”, Mem. Amer. Math. Soc., 47:293 (1984), 1–115 | MR
[12] Farkas W., Johnsen J., Sickel W., “Traces of anisotropic Besov–Lizorkin–Triebel spaces – a complete treatment of the borderline cases”, Math. Bohem., 125:1 (2000), 1–37 | MR | Zbl
[13] Fefferman C., Stein E. M., “Some maximal inequalities”, Amer. J. Math., 93:1 (1971), 107–115 | DOI | MR | Zbl
[14] Frazier M., Jawerth B., “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl
[15] Hedberg L. I., Netrusov Yu., An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation, Mem. Amer. Math. Soc., 188, No 882, 2007 | MR
[16] Jawerth B., “Some observations on Besov and Lizorkin–Triebel spaces”, Math. Scand., 40:1 (1977), 94–104 | MR | Zbl
[17] Jawerth B., “The trace of Sobolev and Besov spaces if $0
1$”, Studia Math., 62:1 (1978), 65–71 | MR | Zbl[18] Jerison D., Kenig C. E., “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 161–219 | DOI | MR | Zbl
[19] Jonsson A., Wallin H., Function Spaces on Subsets of $\mathbb R^n$, Math. Rep., 2, No 1, 1984 | MR | Zbl
[20] Kamont A., “A discrete characterization of Besov spaces”, Approx. Theory Appl. (N.S.), 13:2 (1997), 63–77 | MR | Zbl
[21] Rychkov V. S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl
[22] Saka K., “The trace theorem for Triebel–Lizorkin spaces and Besov spaces on certain fractal sets. I: The Restriction Theorem”, Mem. College Ed. Akita Univ. Natur. Sci., 48 (1995), 1–17 | MR | Zbl
[23] Saka K., “The trace theorem for Triebel–Lizorkin spaces and Besov spaces on certain fractal sets. II: The Extension Theorem”, Mem. College Ed. Akita Univ. Natur. Sci., 49 (1996), 1–27 | MR | Zbl
[24] Seeger A., “A note on Triebel–Lizorkin spaces”, Approximation and Function Spaces, Banach Center Publ., 22, PWN Polish Sci. Publ., Warsaw, 1989, 391–400 | MR
[25] Triebel H., Theory of Function Spaces, II, Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, etc., 1992 | MR | Zbl