Complexity of quasivariety lattices for varieties of differential groupoids
Matematičeskie trudy, Tome 12 (2009) no. 1, pp. 26-39
Cet article a éte moissonné depuis la source Math-Net.Ru
In 1987, Romanowska and Roszkowska found an explicit description of the lattice of varieties of differential groupoids. In 2008, the author proved that the lattice of quasivarieties of differential groupoids is $Q$-universal. In the present article, we find an example of a minimal $Q$-universal variety of differential groupoids.
@article{MT_2009_12_1_a1,
author = {A. V. Kravchenko},
title = {Complexity of quasivariety lattices for varieties of differential groupoids},
journal = {Matemati\v{c}eskie trudy},
pages = {26--39},
year = {2009},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2009_12_1_a1/}
}
A. V. Kravchenko. Complexity of quasivariety lattices for varieties of differential groupoids. Matematičeskie trudy, Tome 12 (2009) no. 1, pp. 26-39. http://geodesic.mathdoc.fr/item/MT_2009_12_1_a1/
[1] Kravchenko A. V., “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii unarnykh algebr”, Mat. trudy, 4:2 (2001), 113–127 | MR | Zbl
[2] Kravchenko A. V., “$\mathcal Q$-universalnye kvazimnogoobraziya grafov”, Algebra i logika, 41:3 (2002), 311–325 | MR | Zbl
[3] Kravchenko A. V., “On the lattice of quasivarieties of differential groupoids”, Comment. Math. Univ. Carolin., 49:1 (2008), 11–17 | MR
[4] Romanowska A., Roszkowska B., “On some groupoid modes”, Demonstratio Math., 20:1–2 (1987), 277–290 (1988) | MR | Zbl
[5] Romanowska A. B., Smith J. D. H., Modes, World Scientific Publishing Co., Singapore, 2002 | MR | Zbl