On homogeneity and small extensions of models of the theory of linear ordering
Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 148-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some properties concerning homogeneity and the existence of small extensions proved earlier for models of superstable theories, are proved here for models of the theory of linear ordering.
@article{MT_2008_11_2_a4,
     author = {K. Zh. Kudaibergenov},
     title = {On homogeneity and small extensions of models of the theory of linear ordering},
     journal = {Matemati\v{c}eskie trudy},
     pages = {148--158},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_2_a4/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - On homogeneity and small extensions of models of the theory of linear ordering
JO  - Matematičeskie trudy
PY  - 2008
SP  - 148
EP  - 158
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_2_a4/
LA  - ru
ID  - MT_2008_11_2_a4
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T On homogeneity and small extensions of models of the theory of linear ordering
%J Matematičeskie trudy
%D 2008
%P 148-158
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_2_a4/
%G ru
%F MT_2008_11_2_a4
K. Zh. Kudaibergenov. On homogeneity and small extensions of models of the theory of linear ordering. Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 148-158. http://geodesic.mathdoc.fr/item/MT_2008_11_2_a4/

[1] Kudaibergenov K. Zh., “Elementarnye rasshireniya, opuskanie tipov i odnorodnye modeli”, Algebra i logika, 27:2 (1988), 148–171 | MR | Zbl

[2] Kudaibergenov K. Zh., Odnorodnye modeli, Dis. ... dokt. fiz.-matem. nauk, Alma-Ata, 1991

[3] Kudaibergenov K. Zh., “Zamechaniya ob otnositelnoi nasyschennosti”, Izvestiya AN RK. Ser. fiz.-mat., 1996, no. 1, 28–31 | MR

[4] Hrushovski E., “Kueker's conjecture for stable theories”, J. Symbolic Logic, 5:1 (1989), 207–219 | MR

[5] Keisler H. J., Morley M. D., “On the number of homogeneous models of a given power”, Israel J. Math., 5:2 (1967), 73–78 | DOI | MR | Zbl

[6] Kudaibergenov K. Zh., “Homogeneous models of stable theories”, Siberian Adv. Math., 3:3 (1993), 56–88 | MR

[7] Shelah S., “Finite diagrams stable in power”, Ann. Math. Logic, 2 (1970), 69–118 | DOI | MR | Zbl

[8] Shelah S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl

[9] Steinhorn C., “A new omitting types theorem”, Proc. Amer. Math. Soc., 89:3 (1983), 480–486 | DOI | MR | Zbl