On homogeneity and small extensions of models of the theory of linear ordering
Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 148-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some properties concerning homogeneity and the existence of small extensions proved earlier for models of superstable theories, are proved here for models of the theory of linear ordering.
@article{MT_2008_11_2_a4,
     author = {K. Zh. Kudaibergenov},
     title = {On homogeneity and small extensions of models of the theory of linear ordering},
     journal = {Matemati\v{c}eskie trudy},
     pages = {148--158},
     year = {2008},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_2_a4/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - On homogeneity and small extensions of models of the theory of linear ordering
JO  - Matematičeskie trudy
PY  - 2008
SP  - 148
EP  - 158
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_2_a4/
LA  - ru
ID  - MT_2008_11_2_a4
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T On homogeneity and small extensions of models of the theory of linear ordering
%J Matematičeskie trudy
%D 2008
%P 148-158
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/MT_2008_11_2_a4/
%G ru
%F MT_2008_11_2_a4
K. Zh. Kudaibergenov. On homogeneity and small extensions of models of the theory of linear ordering. Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 148-158. http://geodesic.mathdoc.fr/item/MT_2008_11_2_a4/

[1] Kudaibergenov K. Zh., “Elementarnye rasshireniya, opuskanie tipov i odnorodnye modeli”, Algebra i logika, 27:2 (1988), 148–171 | MR | Zbl

[2] Kudaibergenov K. Zh., Odnorodnye modeli, Dis. ... dokt. fiz.-matem. nauk, Alma-Ata, 1991

[3] Kudaibergenov K. Zh., “Zamechaniya ob otnositelnoi nasyschennosti”, Izvestiya AN RK. Ser. fiz.-mat., 1996, no. 1, 28–31 | MR

[4] Hrushovski E., “Kueker's conjecture for stable theories”, J. Symbolic Logic, 5:1 (1989), 207–219 | MR

[5] Keisler H. J., Morley M. D., “On the number of homogeneous models of a given power”, Israel J. Math., 5:2 (1967), 73–78 | DOI | MR | Zbl

[6] Kudaibergenov K. Zh., “Homogeneous models of stable theories”, Siberian Adv. Math., 3:3 (1993), 56–88 | MR

[7] Shelah S., “Finite diagrams stable in power”, Ann. Math. Logic, 2 (1970), 69–118 | DOI | MR | Zbl

[8] Shelah S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl

[9] Steinhorn C., “A new omitting types theorem”, Proc. Amer. Math. Soc., 89:3 (1983), 480–486 | DOI | MR | Zbl