Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2008_11_2_a3, author = {A. G. Kremlyov and Yu. G. Nikonorov}, title = {The signature of the {Ricci} curvature of left-invariant {Riemannian} metrics on four-dimensional {Lie} groups. {The} unimodular case}, journal = {Matemati\v{c}eskie trudy}, pages = {115--147}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2008_11_2_a3/} }
TY - JOUR AU - A. G. Kremlyov AU - Yu. G. Nikonorov TI - The signature of the Ricci curvature of left-invariant Riemannian metrics on four-dimensional Lie groups. The unimodular case JO - Matematičeskie trudy PY - 2008 SP - 115 EP - 147 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2008_11_2_a3/ LA - ru ID - MT_2008_11_2_a3 ER -
%0 Journal Article %A A. G. Kremlyov %A Yu. G. Nikonorov %T The signature of the Ricci curvature of left-invariant Riemannian metrics on four-dimensional Lie groups. The unimodular case %J Matematičeskie trudy %D 2008 %P 115-147 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2008_11_2_a3/ %G ru %F MT_2008_11_2_a3
A. G. Kremlyov; Yu. G. Nikonorov. The signature of the Ricci curvature of left-invariant Riemannian metrics on four-dimensional Lie groups. The unimodular case. Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 115-147. http://geodesic.mathdoc.fr/item/MT_2008_11_2_a3/
[1] Alekseevskii D. V., “Odnorodnye rimanovy prostranstva otritsatelnoi krivizny”, Mat. sb., 96(138):1 (1975), 93–117 | MR | Zbl
[2] Alekseevskii D. V., Kimelfeld B. N., “Struktura odnorodnykh rimanovykh prostranstv s nulevoi kriviznoi Richchi”, Funkts. analiz i ego prilozh., 9:2 (1975), 5–11 | MR | Zbl
[3] Berestovskii V. N., “Odnorodnye rimanovy mnogoobraziya polozhitelnoi krivizny Richchi”, Mat. zametki, 58:3 (1995), 334–340 | MR | Zbl
[4] Besse A. L., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl
[5] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., Stroenie grupp i algebr Li, Itogi nauki i tekhn. Ser. Sovr. problemy matem. Fundam. napravleniya, 41, VINITI, M., 1990
[6] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1968 | Zbl
[7] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1963, no. 1, 114–123 | MR | Zbl
[8] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR | Zbl
[9] Andrada A., Barberis M. L., Dotti I. G., Ovando G. P., “Product structures on four dimensional solvable Lie algebras”, Homology, Homotopy Appl. (electronic), 7:1 (2005), 9–37 | MR | Zbl
[10] Berard-Bergery L., “Les espaces homogénes Riemanniens de dimension 4”, Four-dimensional homogeneous Riemannian spaces, Riemannian geometry in dimension 4, Séminaire Arthur Besse (Paris, 1978/1979), CEDIC, Paris, 1981, 40–60 | MR
[11] Bochner S., “Vector fields and Ricci curvature”, Bull. Amer. Math. Soc., 52 (1946), 776–797 | DOI | MR | Zbl
[12] Cheeger J., Gromoll D., “The splitting theorem for manifolds of nonnegative Ricci curvature”, J. Differential Geom., 6 (1971/72), 119–128 | MR | Zbl
[13] Christodoulakis T., Papadopoulos G. O., Dimakis A., “Automorphisms of real four-dimensional Lie algebras and the invariant characterization of homogeneous 4-spaces”, J. Phys. A: Math. Gen., 36 (2003), 427–441 | DOI | MR | Zbl
[14] De Graaf W. A., “Classification of solvable Lie algebras”, Experiment. Math., 14:1 (2005), 15–25 | MR | Zbl
[15] Dotti Miatello I., “Ricci curvature of left-invariant metrics on solvable unimodular Lie groups”, Math. Z., 180:2 (1982), 257–263 | MR | Zbl
[16] Ishihara Sh., “Homogeneous Riemannian spaces of four dimensions”, J. Math. Soc. Japan, 7 (1955), 345–370 | MR | Zbl
[17] Jensen G., “The scalar curvature of left-invariant Riemannian metrics”, Indiana Univ. Math. J., 20 (1971), 1125–1143 | DOI | MR
[18] Jensen G., “Homogeneous Einstein spaces of dimension four”, J. Differential Geom., 3 (1969), 309–349 | MR | Zbl
[19] Lai Heng-Lung, Lue Huei-Shyong, “Scalar curvature of Lie groups”, Proc. Amer. Math. Soc., 81 (1981), 311–315 | DOI | MR | Zbl
[20] Milnor J., “Curvatures of left-invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329 | DOI | MR | Zbl
[21] Myers S. B., “Riemannian manifolds with positive mean curvature”, Duke Math. J., 8 (1941), 401–404 | DOI | MR | Zbl
[22] Nabonnand Ph., Diplôme d'Études Approfondies, V. 1, Univ. de Nancy, Nancy, 1978
[23] Ovando G., “Invariant complex structures on solvable real Lie groups”, Manuscripta Math., 103:1 (2000), 19–30 | DOI | MR | Zbl
[24] Patera J., Sharp R. T., Winternitz P., Zassenhaus H., “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl
[25] Patrangenaru V., “Classifying 3- and 4-dimensional homogeneous Riemannian manifolds by Cartan triples”, Pacific J. Math., 173:2 (1996), 511–532 | MR | Zbl
[26] Snow J., “Invariant complex structures on four-dimensional solvable real Lie groups”, Manuscripta Math., 66:4 (1990), 397–412 | DOI | MR | Zbl
[27] Uesu K., “Scalar curvatures of left-invariant metrics on some Lie groups”, Hiroshima Math. J., 10:2 (1980), 323–327 | MR | Zbl
[28] Wolf J. A., “Curvature in nilpotent Lie groups”, Proc. Amer. Math. Soc., 15:2 (1964), 271–274 | DOI | MR | Zbl
[29] Wolf J. A., “A compatibility condition between invariant Riemannian metrics and Levi–Whitehead decomposition of a coset space”, Trans. Amer. Math. Soc., 139 (1969), 429–442 | DOI | MR | Zbl
[30] Yano K., Bochner S., Curvature and Betti Numbers, Princeton Univ. Press, Princeton, NJ, 1953 | MR | Zbl