Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2008_11_1_a5, author = {E. A. Plotnikova}, title = {Sobolev-type integral representations for functions defined on {Carnot} groups}, journal = {Matemati\v{c}eskie trudy}, pages = {113--131}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a5/} }
E. A. Plotnikova. Sobolev-type integral representations for functions defined on Carnot groups. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 113-131. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a5/
[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[2] Vodopyanov S. K., “Otobrazheniya s ogranichennym iskazheniem i konechnym iskazheniem na gruppakh Karno”, Sib. mat. zhurn., 40:4 (1999), 764–804 | MR
[3] Vodopyanov S. K., Pupyshev I. M., “Teorema tipa Uitni o prodolzhenii funktsii na gruppakh Karno”, Sib. mat. zhurn., 47:4 (2006), 731–752 | MR
[4] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR
[5] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo Leningr. un-ta, L., 1985 | MR
[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR
[7] Reshetnyak Yu. G., Teoremy ustoichivosti v geometrii i analize, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 1996 | MR | Zbl
[8] Romanovskii N. N., “Integralnye predstavleniya i teoremy vlozheniya dlya funktsii, zadannykh na gruppakh Geizenberga”, Dokl. RAN, 382:4 (2002), 456–459 | MR | Zbl
[9] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[10] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[11] Arcozzi N., Morbidelli D., “A global inverse map theorem and bilipschitz maps in the Heisenberg group”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52:2 (2006), 189–197 | DOI | MR | Zbl
[12] Capogna L., Danielli D., Garofalo N., “An embedding theorem and the Harnack inequality for nonlinear subelliptic equations”, Comm. Partial Differential Equations, 18 (1993), 1765–1794 | DOI | MR | Zbl
[13] Capogna L., Danielli D., Garofalo N., “Capacitary estimates and the local behavior of solutions to nonlinear subelliptic equations”, Amer. J. Math., 118 (1996), 1153–1196 | DOI | MR | Zbl
[14] Dairbekov N. S., “Mappings with bounded distortion of two-step Carnot groups”, Trudy po analizu i geometrii, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2000, 122–155 | MR | Zbl
[15] Folland G. B., Stein E. M., Hardy Spaces on Homogeneous Groups, Math. Notes, 28, Amer. Math. Soc., Princeton, NJ; Tokyo Univ. Press, Tokyo, 1982 | MR
[16] Franchi B., Lanconelli E., “Hölder regularity theorem for a class of nonuniformly elliptic operators with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10:4 (1983), 523–541 | MR | Zbl
[17] Hajłasz P., “Geometric approach to Sobolev spaces and badly degenerated elliptic equation”, GAKUTO Internat. Ser. Math. Sci. Appl., 7 (1996), 141–168 | MR
[18] Hajłasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, no. 688, Amer. Math. Soc., Providence, RI, 2000 | MR
[19] Heinonen J., Holopainen I., “Quasiregular maps on Carnot groups”, J. Geom. Anal., 7:1 (1997), 109–148 | MR | Zbl
[20] Hörmander L., “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl
[21] Jerison D., “The Poincaré inequality for vector fields satisfying Hörmander's condition”, Duke Math. J., 53:2 (1986), 503–523 | DOI | MR | Zbl
[22] Lu G., “Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications”, Rev. Mat. Iberoamericana, 8:3 (1992), 367–439 | MR | Zbl
[23] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rans un”, Ann. of Math. (2), 129:1 (1989), 1–60 | DOI | MR | Zbl
[24] Rothschild L. P., Stein E. M., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:3–4 (1976), 247–320 | DOI | MR
[25] Vodop'yanov S. K., “Foundations of the theory of mappings with bounded distortion on Carnot groups”, The Interaction of Analysis and Geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 303–344 | MR