Sobolev-type integral representations for functions defined on Carnot groups
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 113-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some integral representations of the form $f(x)=P(f)+K(\nabla f)$ on the Carnot groups, where $P(f)$ is a polynomial and $K$ is an integral operator with a specific singularity. These representations are employed to prove the weak Poincaré inequality.
@article{MT_2008_11_1_a5,
     author = {E. A. Plotnikova},
     title = {Sobolev-type integral representations for functions defined on {Carnot} groups},
     journal = {Matemati\v{c}eskie trudy},
     pages = {113--131},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a5/}
}
TY  - JOUR
AU  - E. A. Plotnikova
TI  - Sobolev-type integral representations for functions defined on Carnot groups
JO  - Matematičeskie trudy
PY  - 2008
SP  - 113
EP  - 131
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a5/
LA  - ru
ID  - MT_2008_11_1_a5
ER  - 
%0 Journal Article
%A E. A. Plotnikova
%T Sobolev-type integral representations for functions defined on Carnot groups
%J Matematičeskie trudy
%D 2008
%P 113-131
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a5/
%G ru
%F MT_2008_11_1_a5
E. A. Plotnikova. Sobolev-type integral representations for functions defined on Carnot groups. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 113-131. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a5/