Sobolev-type integral representations for functions defined on Carnot groups
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 113-131
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain some integral representations of the form $f(x)=P(f)+K(\nabla f)$ on the Carnot groups, where $P(f)$ is a polynomial and $K$ is an integral operator with a specific singularity. These representations are employed to prove the weak Poincaré inequality.
@article{MT_2008_11_1_a5,
author = {E. A. Plotnikova},
title = {Sobolev-type integral representations for functions defined on {Carnot} groups},
journal = {Matemati\v{c}eskie trudy},
pages = {113--131},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a5/}
}
E. A. Plotnikova. Sobolev-type integral representations for functions defined on Carnot groups. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 113-131. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a5/