The Extension of Functions of Sobolev Classes Beyond the Boundary of the~Domain on Carnot Groups
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 187-212

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the theorem on extension of the functions of the Sobolev space $W^l_p(\Omega)$ which are defined on a bounded $(\varepsilon,\delta)$-domain $\Omega$ in a two-step Carnot group beyond the boundary of the domain of definition. This theorem generalizes the well-known extension theorem by P. Jones for domains of the Euclidean space.
@article{MT_2007_10_2_a7,
     author = {I. M. Pupyshev},
     title = {The {Extension} of {Functions} of {Sobolev} {Classes} {Beyond} the {Boundary} of {the~Domain} on {Carnot} {Groups}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {187--212},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a7/}
}
TY  - JOUR
AU  - I. M. Pupyshev
TI  - The Extension of Functions of Sobolev Classes Beyond the Boundary of the~Domain on Carnot Groups
JO  - Matematičeskie trudy
PY  - 2007
SP  - 187
EP  - 212
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a7/
LA  - ru
ID  - MT_2007_10_2_a7
ER  - 
%0 Journal Article
%A I. M. Pupyshev
%T The Extension of Functions of Sobolev Classes Beyond the Boundary of the~Domain on Carnot Groups
%J Matematičeskie trudy
%D 2007
%P 187-212
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_2_a7/
%G ru
%F MT_2007_10_2_a7
I. M. Pupyshev. The Extension of Functions of Sobolev Classes Beyond the Boundary of the~Domain on Carnot Groups. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 187-212. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a7/