The Extension of Functions of Sobolev Classes Beyond the Boundary of the~Domain on Carnot Groups
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 187-212
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the theorem on extension of the functions of the Sobolev space $W^l_p(\Omega)$ which are defined on a bounded $(\varepsilon,\delta)$-domain $\Omega$ in a two-step Carnot group beyond the boundary of the domain of definition. This theorem generalizes the well-known extension theorem by P. Jones for domains of the Euclidean space.
@article{MT_2007_10_2_a7,
author = {I. M. Pupyshev},
title = {The {Extension} of {Functions} of {Sobolev} {Classes} {Beyond} the {Boundary} of {the~Domain} on {Carnot} {Groups}},
journal = {Matemati\v{c}eskie trudy},
pages = {187--212},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a7/}
}
TY - JOUR AU - I. M. Pupyshev TI - The Extension of Functions of Sobolev Classes Beyond the Boundary of the~Domain on Carnot Groups JO - Matematičeskie trudy PY - 2007 SP - 187 EP - 212 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a7/ LA - ru ID - MT_2007_10_2_a7 ER -
I. M. Pupyshev. The Extension of Functions of Sobolev Classes Beyond the Boundary of the~Domain on Carnot Groups. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 187-212. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a7/