A Discrete Norm on a~Lipschitz Surface and the~Sobolev Straightening of a~Boundary
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 163-186

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a piece of the boundary of a Lipschitz domain be parameterized conventionally and let the traces of functions in the Sobolev space $W^2_p$ be written out through this parameter. In this space, we propose a discrete (diadic) norm generalizing A. Kamont's norm in the plane case. We study the conditions when the space of traces coincides with the corresponding space for the plane boundary.
@article{MT_2007_10_2_a6,
     author = {A. I. Parfenov},
     title = {A {Discrete} {Norm} on {a~Lipschitz} {Surface} and {the~Sobolev} {Straightening} of {a~Boundary}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {163--186},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a6/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - A Discrete Norm on a~Lipschitz Surface and the~Sobolev Straightening of a~Boundary
JO  - Matematičeskie trudy
PY  - 2007
SP  - 163
EP  - 186
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a6/
LA  - ru
ID  - MT_2007_10_2_a6
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T A Discrete Norm on a~Lipschitz Surface and the~Sobolev Straightening of a~Boundary
%J Matematičeskie trudy
%D 2007
%P 163-186
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_2_a6/
%G ru
%F MT_2007_10_2_a6
A. I. Parfenov. A Discrete Norm on a~Lipschitz Surface and the~Sobolev Straightening of a~Boundary. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 163-186. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a6/