A Discrete Norm on a~Lipschitz Surface and the~Sobolev Straightening of a~Boundary
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 163-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a piece of the boundary of a Lipschitz domain be parameterized conventionally and let the traces of functions in the Sobolev space $W^2_p$ be written out through this parameter. In this space, we propose a discrete (diadic) norm generalizing A. Kamont's norm in the plane case. We study the conditions when the space of traces coincides with the corresponding space for the plane boundary.
@article{MT_2007_10_2_a6,
     author = {A. I. Parfenov},
     title = {A {Discrete} {Norm} on {a~Lipschitz} {Surface} and {the~Sobolev} {Straightening} of {a~Boundary}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {163--186},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a6/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - A Discrete Norm on a~Lipschitz Surface and the~Sobolev Straightening of a~Boundary
JO  - Matematičeskie trudy
PY  - 2007
SP  - 163
EP  - 186
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a6/
LA  - ru
ID  - MT_2007_10_2_a6
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T A Discrete Norm on a~Lipschitz Surface and the~Sobolev Straightening of a~Boundary
%J Matematičeskie trudy
%D 2007
%P 163-186
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_2_a6/
%G ru
%F MT_2007_10_2_a6
A. I. Parfenov. A Discrete Norm on a~Lipschitz Surface and the~Sobolev Straightening of a~Boundary. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 163-186. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a6/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[2] Irodova I. P., “Diadicheskie prostranstva Besova”, Algebra i analiz, 12:3 (2000), 40–80 | MR

[3] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[4] Parfenov A. I., Szhimayuschii operator i granichnye znacheniya, Preprint No 155, Izd-vo In-ta matematiki, Novosibirsk, 2005 | MR

[5] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[6] Buffa A. and Geymonat G., “On traces of functions in $W^{2,p}(\Omega)$ for Lipschitz domains in $\mathbb R^3$”, C. R. Acad. Sci. Paris Sér. I Math., 332:8 (2001), 699–704 | MR | Zbl

[7] Burenkov V. I., Sobolev Spaces on Domains, Teubner-Texte zur Mathematik, 137, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1998 | MR | Zbl

[8] Burenkov V. I., “Description of traces for Sobolev spaces defined on piecewise smooth surfaces”, Mezhdunar. shkola-konf. po geometrii i analizu, posvyaschennaya 75-letiyu akademika Yu. G. Reshetnyaka, Tez. dokl. (2004 g.), Izd-vo In-ta matematiki, Novosibirsk, 2004, 6–8

[9] Geymonat G. and Krasucki F., “On the existence of the Airy function in Lipschitz domains. Application to the traces of $H^2$”, C. R. Acad. Sci. Paris Sér. I Math., 330:5 (2000), 355–360 | MR | Zbl

[10] Grisvard P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman, Boston, MA, 1985 | MR | Zbl

[11] Jerison D. and Kenig C. E., “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 161–219 | DOI | MR | Zbl

[12] Jonsson A., “Besov spaces on surfaces with singularities”, Manuscripta Math., 71:2 (1991), 121–152 | DOI | MR | Zbl

[13] Jonsson A., “A trace theorem for the Dirichlet form on the Sierpinski gasket”, Math. Z., 250:3 (2005), 599–609 | DOI | MR | Zbl

[14] Jonsson A. and Wallin H., Function Spaces on Subsets of $\mathbb R^n$, Math. Rep. Ser. 2, Part 1, Harwood Acad. Publ., New York, 1984 | MR

[15] Kamont A., “A discrete characterization of Besov spaces”, Approx. Theory Appl. (N.S.), 13:2 (1997), 63–77 | MR | Zbl

[16] Marschall J., “The trace of Sobolev–Slobodeckiĭspaces on Lipschitz domains”, Manuscripta Math., 58:1, 2 (1987), 47–65 | DOI | MR | Zbl

[17] Triebel H., “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Univ. Complut. Madrid, 15:2 (2002), 475–524 | MR | Zbl