Two Theorems on Defect-Freeness for Cyclic Extensions
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 92-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article contains the proofs of two theorems. Under quite special assumptions, we prove that the $p$-cyclic extensions of Henselian valued fields are defect-free. However, the well-known results by Epp and Kuhlmann are easy consequences of these theorems.
@article{MT_2007_10_2_a3,
     author = {Yu. L. Ershov},
     title = {Two {Theorems} on {Defect-Freeness} for {Cyclic} {Extensions}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {92--111},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a3/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Two Theorems on Defect-Freeness for Cyclic Extensions
JO  - Matematičeskie trudy
PY  - 2007
SP  - 92
EP  - 111
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a3/
LA  - ru
ID  - MT_2007_10_2_a3
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Two Theorems on Defect-Freeness for Cyclic Extensions
%J Matematičeskie trudy
%D 2007
%P 92-111
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_2_a3/
%G ru
%F MT_2007_10_2_a3
Yu. L. Ershov. Two Theorems on Defect-Freeness for Cyclic Extensions. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 92-111. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a3/

[1] Ershov Yu. L., Kratno normirovannye polya, Nauchnaya kniga, Novosibirsk, 2000

[2] Ershov Yu. L., “Teoremy o nepreryvnosti kornei mnogochlenov v normirovannykh polyakh”, Sib. mat. zhurn., 47:6 (2006), 1258–1264 | MR | Zbl

[3] Ershov Yu. L., “Teoremy o sokhranenii stabilnosti”, Algebra i logika, 47:3 (2008), 269–287 (to appear)

[4] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[5] Leng S., Algebra, Mir, M., 1968

[6] Bosch S., Güntzer U., and Remmert R., Non-Archimedean Analysis, Springer, Berlin, 1984 | MR

[7] Epp H. P., “Eliminating wild ramification”, Invent. Math., 19 (1973), 235–249 | DOI | MR | Zbl

[8] Kuhlmann F.-V., Henselian Function Fields and Tame Fields, Manuscript, Heidelberg, 1990

[9] Ohm J., “The Henselian defect for valued function fields”, Proc. Amer. Math. Soc., 107:2 (1989), 299–308 | DOI | MR | Zbl