The Traces of Bessel Potentials on Regular Subsets of Carnot Groups
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 19-61

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the direct theorem on the traces of the Bessel potentials $L^\alpha_p$ defined on a Carnot group, on the regular closed subsets called Ahlfors $d$-sets. The result is convertible for integer $\alpha$, i.e., for the Sobolev spaces $W^\alpha_p$ (the converse trace theorem was proven in [1]). This theorem generalizes A. Johnsson and H. Wallin's results [2] for Sobolev functions and Bessel potentials on the Euclidean space.
@article{MT_2007_10_2_a1,
     author = {S. K. Vodop'yanov and I. M. Pupyshev},
     title = {The {Traces} of {Bessel} {Potentials} on {Regular} {Subsets} of {Carnot} {Groups}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {19--61},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a1/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
AU  - I. M. Pupyshev
TI  - The Traces of Bessel Potentials on Regular Subsets of Carnot Groups
JO  - Matematičeskie trudy
PY  - 2007
SP  - 19
EP  - 61
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a1/
LA  - ru
ID  - MT_2007_10_2_a1
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%A I. M. Pupyshev
%T The Traces of Bessel Potentials on Regular Subsets of Carnot Groups
%J Matematičeskie trudy
%D 2007
%P 19-61
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_2_a1/
%G ru
%F MT_2007_10_2_a1
S. K. Vodop'yanov; I. M. Pupyshev. The Traces of Bessel Potentials on Regular Subsets of Carnot Groups. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 19-61. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a1/