The Traces of Bessel Potentials on Regular Subsets of Carnot Groups
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 19-61
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the direct theorem on the traces of the Bessel potentials $L^\alpha_p$ defined on a Carnot group, on the regular closed subsets called Ahlfors $d$-sets. The result is convertible for integer $\alpha$, i.e., for the Sobolev spaces $W^\alpha_p$ (the converse trace theorem was proven in [1]). This theorem generalizes A. Johnsson and H. Wallin's results [2] for Sobolev functions and Bessel potentials on the Euclidean space.
@article{MT_2007_10_2_a1,
author = {S. K. Vodop'yanov and I. M. Pupyshev},
title = {The {Traces} of {Bessel} {Potentials} on {Regular} {Subsets} of {Carnot} {Groups}},
journal = {Matemati\v{c}eskie trudy},
pages = {19--61},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a1/}
}
S. K. Vodop'yanov; I. M. Pupyshev. The Traces of Bessel Potentials on Regular Subsets of Carnot Groups. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 19-61. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a1/