On Einstein Extensions of Nilpotent Metric Lie Algebras
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 164-190

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the article is as follows: If a nilpotent noncommutative metric Lie algebra $(\mathfrak n,Q)$ is such that the operator $\operatorname{Id}-\frac{\operatorname{trace}(\mathrm{Ric})}{\operatorname{trace}(\mathrm{Ric}^2)}\mathrm{Ric}$ is positive definite then every Einstein solvable extension of $(\mathfrak n,Q)$ is standard. We deduce several consequences of this assertion. In particular, we prove that all Einstein solvmanifolds of dimension at most 7 are standard.
@article{MT_2007_10_1_a7,
     author = {Yu. G. Nikonorov},
     title = {On {Einstein} {Extensions} of {Nilpotent} {Metric} {Lie} {Algebras}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {164--190},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a7/}
}
TY  - JOUR
AU  - Yu. G. Nikonorov
TI  - On Einstein Extensions of Nilpotent Metric Lie Algebras
JO  - Matematičeskie trudy
PY  - 2007
SP  - 164
EP  - 190
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_1_a7/
LA  - ru
ID  - MT_2007_10_1_a7
ER  - 
%0 Journal Article
%A Yu. G. Nikonorov
%T On Einstein Extensions of Nilpotent Metric Lie Algebras
%J Matematičeskie trudy
%D 2007
%P 164-190
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_1_a7/
%G ru
%F MT_2007_10_1_a7
Yu. G. Nikonorov. On Einstein Extensions of Nilpotent Metric Lie Algebras. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 164-190. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a7/