A Categorical Property of the Stone--\v Cech Compactification
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 132-140

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some categorical properties of the functor $O_\beta$ of weakly additive functionals acting in the category Tych of the Tychonoff spaces and their continuous mappings. We show that $O_\beta$ preserves the weight of infinite-dimensional Tychonoff spaces, the singleton, and the empty set, and that $O_\beta$ is monomorphic and continuous in the sense of T. Banakh, takes every perfect mapping to an epimorphism, and preserves intersections of functionally closed sets in a Tychonoff space.
@article{MT_2007_10_1_a4,
     author = {R. B. Beshimov},
     title = {A {Categorical} {Property} of the {Stone--\v} {Cech}  {Compactification}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {132--140},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a4/}
}
TY  - JOUR
AU  - R. B. Beshimov
TI  - A Categorical Property of the Stone--\v Cech  Compactification
JO  - Matematičeskie trudy
PY  - 2007
SP  - 132
EP  - 140
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_1_a4/
LA  - ru
ID  - MT_2007_10_1_a4
ER  - 
%0 Journal Article
%A R. B. Beshimov
%T A Categorical Property of the Stone--\v Cech  Compactification
%J Matematičeskie trudy
%D 2007
%P 132-140
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_1_a4/
%G ru
%F MT_2007_10_1_a4
R. B. Beshimov. A Categorical Property of the Stone--\v Cech  Compactification. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 132-140. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a4/