The Chern--Simons Invariants of Cone-Manifolds with the Whitehead Link Singular Set
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 3-15
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present article, we obtain some explicit integral formulas for the generalized Chern–Simons function $I(W(\alpha,\beta))$ for Whitehead link cone-manifolds in the hyperbolic and spherical cases. We also give the Chern–Simons invariant for the Whitehead link orbifolds. We find a formula for the Chern–Simons invariant of $n$-fold coverings of the three-sphere branched over the Whitehead link.
@article{MT_2007_10_1_a0,
author = {N. V. Abrosimov},
title = {The {Chern--Simons} {Invariants} of {Cone-Manifolds} with the {Whitehead} {Link} {Singular} {Set}},
journal = {Matemati\v{c}eskie trudy},
pages = {3--15},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a0/}
}
N. V. Abrosimov. The Chern--Simons Invariants of Cone-Manifolds with the Whitehead Link Singular Set. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a0/