The Chern--Simons Invariants of Cone-Manifolds with the Whitehead Link Singular Set
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we obtain some explicit integral formulas for the generalized Chern–Simons function $I(W(\alpha,\beta))$ for Whitehead link cone-manifolds in the hyperbolic and spherical cases. We also give the Chern–Simons invariant for the Whitehead link orbifolds. We find a formula for the Chern–Simons invariant of $n$-fold coverings of the three-sphere branched over the Whitehead link.
@article{MT_2007_10_1_a0,
     author = {N. V. Abrosimov},
     title = {The {Chern--Simons} {Invariants} of {Cone-Manifolds} with the {Whitehead} {Link} {Singular} {Set}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a0/}
}
TY  - JOUR
AU  - N. V. Abrosimov
TI  - The Chern--Simons Invariants of Cone-Manifolds with the Whitehead Link Singular Set
JO  - Matematičeskie trudy
PY  - 2007
SP  - 3
EP  - 15
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_1_a0/
LA  - ru
ID  - MT_2007_10_1_a0
ER  - 
%0 Journal Article
%A N. V. Abrosimov
%T The Chern--Simons Invariants of Cone-Manifolds with the Whitehead Link Singular Set
%J Matematičeskie trudy
%D 2007
%P 3-15
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_1_a0/
%G ru
%F MT_2007_10_1_a0
N. V. Abrosimov. The Chern--Simons Invariants of Cone-Manifolds with the Whitehead Link Singular Set. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a0/

[1] Coulson D., Goodman O. A., Hodgson C. D., and Neumann W. D., “Computing arithmetic invariants of 3-manifolds”, Experement. Math., 9:1 (2000), 127–152 | MR | Zbl

[2] Fenchel W., Elementary Geometry in Hyperbolic Space, V. 11, Walter de Gruyter Co., Berlin, 1989 | MR | Zbl

[3] Hilden H. M., Lozano M. T., and Montesinos-Amilibia J. M., “On a remarkable polyhedron geometrizing the figure eight knot cone manifolds”, J. Math. Sci. Univ. Tokyo, 2:3 (1995), 501–561 | MR | Zbl

[4] Hilden H. M., Lozano M. T., and Montesinos-Amilibia J. M., “On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant”, J. Knot Theory Ramifications, 4:1 (1995), 81–114 | DOI | MR | Zbl

[5] Hilden H. M., Lozano M. T., and Montesinos-Amilibia J. M., “On volumes and Chern–Simons invariants of geometric 3-manifolds”, J. Math. Sci. Univ. Tokyo, 3:3 (1996), 723–744 | MR | Zbl

[6] Hilden H. M., Lozano M. T., and Montesinos-Amilibia J. M., “Volumes and Chern–Simons invariants of cyclic covering over rational knots”, Topology and Teichmüller Spaces, Proc. of the 37th Taniguchi Symposium held in Finland (July 1995), World Scientific, Singapore, 1996, 31–35 | MR

[7] Hodgson C. D., Schläfli Revisited: Variation of Volume in Constant Curvature Spaces, Manuscript, University of Melbourne, Melbourne, 1991

[8] Mednykh A., “On the remarkable properties of the hyperbolic Whitehead link cone-manifold”, Knots in Hellas'98, Proc. of the Int. Conf. on Knot Theory and Its Ramifications, V. 24, World Scientific, Singapore, 2000, 290–305 | MR | Zbl

[9] Meyerhoff R., “Density of the Chern–Simons invariant for hyperbolic 3-manifolds”, Low Dimensional Topology and Kleinian Groups, London Math. Soc. Lecture Note Ser., 112, Cambridge Univ. Press, Cambridge, 1986, 217–239 | MR

[10] Mostow G. D., “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Inst. Hautes Ètudes Sci. Publ. Math., 34 (1968), 53–104 | DOI | MR | Zbl