Small Stable Generic Graphs with Infinite Weight. Bipartite Digraphs
Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 154-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

Grounding on Herwig's generic construction that modifies Hrushovski's construction, we give some examples of the small stable theories of bipartite digraphs with infinite weight.
@article{MT_2006_9_2_a6,
     author = {S. V. Sudoplatov},
     title = {Small {Stable} {Generic} {Graphs} with {Infinite} {Weight.} {Bipartite} {Digraphs}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {154--171},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_2_a6/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Small Stable Generic Graphs with Infinite Weight. Bipartite Digraphs
JO  - Matematičeskie trudy
PY  - 2006
SP  - 154
EP  - 171
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_2_a6/
LA  - ru
ID  - MT_2006_9_2_a6
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Small Stable Generic Graphs with Infinite Weight. Bipartite Digraphs
%J Matematičeskie trudy
%D 2006
%P 154-171
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_2_a6/
%G ru
%F MT_2006_9_2_a6
S. V. Sudoplatov. Small Stable Generic Graphs with Infinite Weight. Bipartite Digraphs. Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 154-171. http://geodesic.mathdoc.fr/item/MT_2006_9_2_a6/

[1] Teoriya modelei, Spravochnaya kniga po matematicheskoi logike, t. 1, eds. Dzh. Barvais, Yu. L. Ershov, E. A. Palyutin, A. D. Taimanov, Nauka, M., 1982 | MR

[2] Sudoplatov S. V., “Vlastnye orgrafy”, Sib. mat. zhurn., 48:1 (2007), 205–213 | MR

[3] Sudoplatov S. V., “Sintaksicheskii podkhod k postroeniyu genericheskikh modelei”, Algebra i logika, 46:2 (2007), 244–268 | MR

[4] Sudoplatov S. V., Ovchinnikova E. V., Diskretnaya matematika, INFRA-M, M., 2005

[5] Baldwin J. T. and Shi N., “Stable generic structures”, Ann. Pure Appl. Logic, 79:1 (1996), 1–35 | DOI | MR | Zbl

[6] Herwig B., “Weight $\omega$ in stable theories with few types”, J. Symbolic Logic, 60:2 (1995), 353–373 | DOI | MR | Zbl

[7] Hrushovski E., A Stable $\aleph_0$-Categorical Pseudoplane, Preprint, Hebrew University, Jerusalem, 1988

[8] Shelah S., Classification Theory and the Number of Nonisomorphic Models, Studies in Logic and the Foundations of Mathematics, 92, North-Holland, Amsterdam, 1990 | MR | Zbl