Almost Complex Structures on the~Direct Product of Three-Dimensional Spheres
Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 47-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some almost complex structures on $S^3\times S^3$. In the first part of the article, the product $S^3\times S^3$ is considered as the homogeneous space $U(2)/U(1)\times U(2)/U(1)$. We describe the set of all invariant almost complex structures on $U(2)/U(1)\times U(2)/U(1)$ and the metrics associated with them. We list some results on the properties of these metrics. In the second part of the article, the product of 3d̄imensional spheres is considered as the Lie group $SU(2)\times SU(2)$. In this case, the set of invariant structures is much wider that the set of the structures of the first part. We describe the class of all left-invariant complex structures on $SU(2)\times SU(2)$. Among structures orthogonal with respect to the Killing–Cartan metric, we distinguish the class at which the maximum of the norm of the Nijenhuis tensor is attained. We study some properties of the positively associated almost complex structures on $SU(2)\times SU(2)$.
@article{MT_2006_9_2_a2,
     author = {N. A. Daurtseva},
     title = {Almost {Complex} {Structures} on {the~Direct} {Product} of {Three-Dimensional} {Spheres}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {47--59},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_2_a2/}
}
TY  - JOUR
AU  - N. A. Daurtseva
TI  - Almost Complex Structures on the~Direct Product of Three-Dimensional Spheres
JO  - Matematičeskie trudy
PY  - 2006
SP  - 47
EP  - 59
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_2_a2/
LA  - ru
ID  - MT_2006_9_2_a2
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%T Almost Complex Structures on the~Direct Product of Three-Dimensional Spheres
%J Matematičeskie trudy
%D 2006
%P 47-59
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_2_a2/
%G ru
%F MT_2006_9_2_a2
N. A. Daurtseva. Almost Complex Structures on the~Direct Product of Three-Dimensional Spheres. Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 47-59. http://geodesic.mathdoc.fr/item/MT_2006_9_2_a2/

[1] Daurtseva N. A., “Invariantnye kompleksnye struktury na $S^3\times S^3$”, Elektronnyi zhurnal «Issledovano v Rossii», 81 (2004), 882–887; http://www.zhurnal.ape.relarn.ru/articles/2004/081.pdf

[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 1, 2, Nauka, M., 1981

[3] Calabi E. and Eckmann V., “A class of compact complex manifolds which are not algebraic”, Ann. Math. (2), 58 (1953), 494–500 | DOI | MR | Zbl

[4] Daurtseva N. A., Extreme Values of Sectional Curvature on the Homogeneous Complex Manifold $U(n+1)/U(n)\times U(p+1)/U(p)$, Preprint: , 2003 arXiv: math.DG/0306004

[5] Gray A. and Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58 | DOI | MR | Zbl