Boundary Values of Differentiable Functions Defined on an~Arbitrary Domain of a~Carnot Group
Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 23-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the boundary values of the functions of the Sobolev function spaces $W^l_\infty$ and the Nikol'skiĭ function spaces $H^l_\infty$ which are defined on an arbitrary domain of a Carnot group. We obtain some reversible characteristics of the traces of the spaces under consideration on the boundary of the domain of definition and sufficient conditions for extension of the functions of these spaces outside the domain of definition. In some cases these sufficient conditions are necessary.
@article{MT_2006_9_2_a1,
     author = {S. K. Vodop'yanov and I. M. Pupyshev},
     title = {Boundary {Values} of {Differentiable} {Functions} {Defined} on {an~Arbitrary} {Domain} of {a~Carnot} {Group}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {23--46},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_2_a1/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
AU  - I. M. Pupyshev
TI  - Boundary Values of Differentiable Functions Defined on an~Arbitrary Domain of a~Carnot Group
JO  - Matematičeskie trudy
PY  - 2006
SP  - 23
EP  - 46
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_2_a1/
LA  - ru
ID  - MT_2006_9_2_a1
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%A I. M. Pupyshev
%T Boundary Values of Differentiable Functions Defined on an~Arbitrary Domain of a~Carnot Group
%J Matematičeskie trudy
%D 2006
%P 23-46
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_2_a1/
%G ru
%F MT_2006_9_2_a1
S. K. Vodop'yanov; I. M. Pupyshev. Boundary Values of Differentiable Functions Defined on an~Arbitrary Domain of a~Carnot Group. Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 23-46. http://geodesic.mathdoc.fr/item/MT_2006_9_2_a1/

[1] Vodopyanov S. K., “Vnutrennie geometrii i prostranstva differentsiruemykh funktsii”, Funktsionalnyi analiz i matematicheskaya fizika, IM SO AN SSSR, Novosibirsk, 1987, 18–38 | MR

[2] Vodopyanov S. K., “Izoperimetricheskie sootnosheniya i usloviya prodolzheniya differentsiruemykh funktsii”, Dokl. AN SSSR, 292:1 (1987), 11–15 | MR

[3] Vodopyanov S. K., Formula Teilora i funktsionalnye prostranstva, Izd-vo Novosibirskogo un-ta, Novosibirsk, 1988 | MR

[4] Vodopyanov S. K., Greshnov A. V., “O prodolzhenii funktsii ogranichennoi srednei ostsillyatsii na prostranstvakh odnorodnogo tipa s vnutrennei metrikoi”, Sib. mat. zhurn., 36:5 (1995), 1015–1048 | MR | Zbl

[5] Vodopyanov S. K., Pupyshev P. M., “Teoremy tipa Uitni o prodolzhenii funktsii na gruppakh Karno”, Sib. mat. zhurn., 47:4 (2006), 731–752 | MR

[6] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[7] Folland G. V. and Stein I. M., Hardy Spaces on Homogeneous Groups, Math. Notes., 28, Princeton Univ. Press; University of Tokyo Press, Princeton, New Jersey; Tokyo, 1982 | MR | Zbl

[8] Vodop'yanov S. K., “Equivalent normalizations of Sobolev and Nikol'skii spaces in domains. Boundary values and extension”, Function Spaces and Applications, Lecture Notes in Math., 1302, Springer, Berlin a.o., 1988, 397–409 | MR

[9] Vodopyanov S. K., “Boundary behavior of differentiable functions and related topics”, Nonlinear Analysis, Function Spaces and Applications, Proc. of the Spring School held in Roudnice nad Labem, V. 4, Leipzig, 1990., 224–253 | MR

[10] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36:1 (1934), 63–89 | DOI | MR | Zbl