Dimensions of $\mathbb R$-Trees and Self-Similar Fractal Spaces of Nonpositive Curvature
Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study various dimensions of spaces with nonpositive curvature in the A. D. Alexandrov sense, in particular, of $\mathbb R$-trees. We find some conditions necessary and sufficient for the metric space to be an $\mathbb R$-tree and clarify relations between the topological, Hausdorff, entropy, and rough dimensions. We build the examples of $\mathbb R$-trees and CAT(0)-spaces in which strict inequalities between the topological, Hausdorff, and entropy dimensions hold; we also show that the Hausdorff and entropy dimensions can be arbitrarily large while the topological dimension remains fixed.
@article{MT_2006_9_2_a0,
     author = {P. D. Andreev and V. N. Berestovskii},
     title = {Dimensions of $\mathbb R${-Trees} and {Self-Similar} {Fractal} {Spaces} of {Nonpositive} {Curvature}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_2_a0/}
}
TY  - JOUR
AU  - P. D. Andreev
AU  - V. N. Berestovskii
TI  - Dimensions of $\mathbb R$-Trees and Self-Similar Fractal Spaces of Nonpositive Curvature
JO  - Matematičeskie trudy
PY  - 2006
SP  - 3
EP  - 22
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_2_a0/
LA  - ru
ID  - MT_2006_9_2_a0
ER  - 
%0 Journal Article
%A P. D. Andreev
%A V. N. Berestovskii
%T Dimensions of $\mathbb R$-Trees and Self-Similar Fractal Spaces of Nonpositive Curvature
%J Matematičeskie trudy
%D 2006
%P 3-22
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_2_a0/
%G ru
%F MT_2006_9_2_a0
P. D. Andreev; V. N. Berestovskii. Dimensions of $\mathbb R$-Trees and Self-Similar Fractal Spaces of Nonpositive Curvature. Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 3-22. http://geodesic.mathdoc.fr/item/MT_2006_9_2_a0/

[1] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhizdat, M.; L., 1948

[2] Aleksandrov P. S., Vvedenie v gomologicheskuyu teoriyu razmernosti, Nauka, M., 1975 | MR

[3] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[4] Berestovskni V. N., Odnorodnye prostranstva s vnutrennei metrikoi, Dis. d-ra fiz.-mat. nauk, IM SO AN SSSR, Novosibirsk, 1990

[5] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, Institut kompyuternykh issledovanii, M.; Izhevsk, 2004

[6] Gurevnch V., Volmen G., Teoriya razmernosti, Izd-vo inostr. lit., M., 1948

[7] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-Entropiya i $\varepsilon$-emkost v funktsionalnykh prostranstvakh”, Uspekhi mat. nauk, 14:2(86) (1959), 3–86 | MR

[8] Berestovskii V. N., “Pathologies in Alexandrov spaces of curvature bounded above”, Siberian Adv. Math., 12:4 (2002), 1–18 | MR | Zbl

[9] Bestvina M., “$\mathbb R$-Trees in topology, geometry and group theory”, Handbook of Geometric Topology, eds. Daverman R. J., Sher R. B., Elsevier Science, North-Holland; Amsterdam; London; New York, 2002, 55–91 | MR | Zbl

[10] Bridson M. R. and Haeuiger A., Metric Spaces of Nonpositive Curvature, Die Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[11] Buyalo S. V., Lectures on Spaces of Curvature Bounded Above, Parts I–III, University of Illinois, Urbana-Champaign, 1995

[12] Edgar G. A. and Golds J., “A fractal dimension estimate for a graphdirected iterated function system of non-similarities”, Indiana Univ. Math. J., 48:2 (1999), 429–447 | DOI | MR | Zbl

[13] Falconer K. J., The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[14] Hawkes J., “Hausdorff measure, entropy, and independence on small sets”, Proc. London Math. Soc. (3), 28 (1974), 700–724 | DOI | MR | Zbl

[15] Hutchinson J. E., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[16] Kleiner B., “The local structure of length spaces with curvature bounded above”, Math. Z., 231:3 (1999), 409–456 | DOI | MR | Zbl

[17] Lindstrøm T., Brownian motion on nested fractals, Mem. Amer. Math. Soc., 83, no. 420, 1990 | MR

[18] Mandelbrot V. V., The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, Calif., 1982 | MR | Zbl

[19] Mitchell J., “On Carnot–Carathéodory metrics”, J. Differential Geom., 21:1 (1985), 35–45 | MR | Zbl

[20] Pansu P., “Metriques de Carnot–Carathéodory et quasiisometries des espacies symetriques de rang un”, Ann. of Math (2), 129:1 (1989), 1–60 | DOI | MR | Zbl