Congruences of Hypersheres
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 169-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an $(n-1)$-parametric family of hyperspheres (a congruence of hyperspheres) in the Euclidean space $\mathbb E^n$.
@article{MT_2006_9_1_a7,
     author = {M. A. Cheshkova},
     title = {Congruences of {Hypersheres}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {169--175},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a7/}
}
TY  - JOUR
AU  - M. A. Cheshkova
TI  - Congruences of Hypersheres
JO  - Matematičeskie trudy
PY  - 2006
SP  - 169
EP  - 175
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a7/
LA  - ru
ID  - MT_2006_9_1_a7
ER  - 
%0 Journal Article
%A M. A. Cheshkova
%T Congruences of Hypersheres
%J Matematičeskie trudy
%D 2006
%P 169-175
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_1_a7/
%G ru
%F MT_2006_9_1_a7
M. A. Cheshkova. Congruences of Hypersheres. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 169-175. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a7/

[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 2, Nauka, M., 1981

[2] Cheshkova M. A., “K geometrii $n$-poverkhnostei v evklidovom prostranstve $\mathbb E^{2n+1}$”, Differentsialnaya geometriya mnogoobrazii figur, 28, 1997, 78–81 | Zbl

[3] Cheshkova M. A., “Ob otobrazhenii giperpoverkhnosti vdol normali”, Izv. AGU, 1(23), Izd-vo Altaiskogo gosudarstvennogo un-ta, Barnaul, 2002, 11–13

[4] Shulikovskii V. I., Klassicheskaya differentsialnaya geometriya v tenzornom izlozhenii, GIFML, M., 1963

[5] Corro A. V., Ferreira W., and Tenenblat K., “Minimal surfaces obtained by Ribaucour transformations”, Geom. Dedicata, 96 (2003), 117–150 | DOI | MR | Zbl