Congruences of Hypersheres
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 169-175
Cet article a éte moissonné depuis la source Math-Net.Ru
We study an $(n-1)$-parametric family of hyperspheres (a congruence of hyperspheres) in the Euclidean space $\mathbb E^n$.
@article{MT_2006_9_1_a7,
author = {M. A. Cheshkova},
title = {Congruences of {Hypersheres}},
journal = {Matemati\v{c}eskie trudy},
pages = {169--175},
year = {2006},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a7/}
}
M. A. Cheshkova. Congruences of Hypersheres. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 169-175. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a7/
[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 2, Nauka, M., 1981
[2] Cheshkova M. A., “K geometrii $n$-poverkhnostei v evklidovom prostranstve $\mathbb E^{2n+1}$”, Differentsialnaya geometriya mnogoobrazii figur, 28, 1997, 78–81 | Zbl
[3] Cheshkova M. A., “Ob otobrazhenii giperpoverkhnosti vdol normali”, Izv. AGU, 1(23), Izd-vo Altaiskogo gosudarstvennogo un-ta, Barnaul, 2002, 11–13
[4] Shulikovskii V. I., Klassicheskaya differentsialnaya geometriya v tenzornom izlozhenii, GIFML, M., 1963
[5] Corro A. V., Ferreira W., and Tenenblat K., “Minimal surfaces obtained by Ribaucour transformations”, Geom. Dedicata, 96 (2003), 117–150 | DOI | MR | Zbl