Seven-Dimensional Homogeneous Einstein Manifolds\break of Negative Sectional Curvature
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 101-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we classify the seven-dimensional homogeneous Einstein manifolds of negative sectional curvature.
@article{MT_2006_9_1_a4,
     author = {E. V. Nikitenko},
     title = {Seven-Dimensional {Homogeneous} {Einstein} {Manifolds\break} of {Negative} {Sectional} {Curvature}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a4/}
}
TY  - JOUR
AU  - E. V. Nikitenko
TI  - Seven-Dimensional Homogeneous Einstein Manifolds\break of Negative Sectional Curvature
JO  - Matematičeskie trudy
PY  - 2006
SP  - 101
EP  - 116
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a4/
LA  - ru
ID  - MT_2006_9_1_a4
ER  - 
%0 Journal Article
%A E. V. Nikitenko
%T Seven-Dimensional Homogeneous Einstein Manifolds\break of Negative Sectional Curvature
%J Matematičeskie trudy
%D 2006
%P 101-116
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_1_a4/
%G ru
%F MT_2006_9_1_a4
E. V. Nikitenko. Seven-Dimensional Homogeneous Einstein Manifolds\break of Negative Sectional Curvature. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 101-116. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a4/

[1] Alekseevskii D. V., “Klassifikatsiya kvaternionnykh prostranstv s tranzitivnoi razreshimoi gruppoi dvizhenii”, Izv. AN SSSR. Ser. mat., 39:2 (1975), 315–362 | MR | Zbl

[2] Alekseevskii D. V., “Odnorodnye rimanovy prostranstva otritsatelnoi krivizny”, Mat. sb., 96 (1975), 93–117 | MR | Zbl

[3] Besse A. L., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl

[4] Nikitenko E. V., Nikonorov Yu. G., “Shestimernye einshteinovy solvmnogoobraziya”, Mat. trudy, 8:1 (2005), 71–121 | MR

[5] Nikonorov Yu. G., “Pyatimernye einshteinovy solvmnogoobraziya”, Trudy po analizu i geometrii, Izd-vo In-ta matematiki, Novosibirsk, 2003, 343–367

[6] Deloff E., Naturally Reductive Metrics With Volume Preserving Geodesic Symmetries on NC-Algebras, Ph.D. Thesis, Rutgers, New Brunswick, 1979

[7] Heber J., “Noncompact homogeneous Einstein spaces”, Invent. Math., 133:2 (1998), 279–352 | DOI | MR | Zbl

[8] Heintze E., “On homogeneous manifolds of negative curvature”, Math. Ann., 211 (1974), 23–34 | DOI | MR | Zbl

[9] Jensen G., “Homogeneous Einstein spaces of dimension 4”, J. Differential Geom., 3 (1969), 309–349 | MR | Zbl

[10] Nikonorov Yu. G., “Noncompact homogeneous Einstein 5-manifolds”, Geom. Dedicata, 113 (2005), 107–143 | DOI | MR | Zbl

[11] Will C., “Rank-one Einstein solvmanifolds of dimension 7”, Differential Geom. Appl., 19:3 (2003), 307–318 | DOI | MR | Zbl

[12] Wolter T. N., “Einstein metrics on solvable groups”, Math. Z., 206:3 (1991), 457–471 | DOI | MR | Zbl