Compactness of Complete Mappings and Its Connections with Various Kinds of Nonconnectednesses of Continuous Mappings
Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 184-198
Voir la notice de l'article provenant de la source Math-Net.Ru
We give some necessary and sufficient conditions for compactness of tubularly (weakly) $\Pi$-complete and (weakly) $\Pi$-complete mappings that generalize compact mappings in the class of Tychonoff mappings and still have many important properties of compact mappings. We study the relationship between complete mappings and various types of nonconnectednesses of continuous mappings.
@article{MT_2005_8_2_a6,
author = {D. K. Musaev},
title = {Compactness of {Complete} {Mappings} and {Its} {Connections} with {Various} {Kinds} of {Nonconnectednesses} of {Continuous} {Mappings}},
journal = {Matemati\v{c}eskie trudy},
pages = {184--198},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2005_8_2_a6/}
}
TY - JOUR AU - D. K. Musaev TI - Compactness of Complete Mappings and Its Connections with Various Kinds of Nonconnectednesses of Continuous Mappings JO - Matematičeskie trudy PY - 2005 SP - 184 EP - 198 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2005_8_2_a6/ LA - ru ID - MT_2005_8_2_a6 ER -
D. K. Musaev. Compactness of Complete Mappings and Its Connections with Various Kinds of Nonconnectednesses of Continuous Mappings. Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 184-198. http://geodesic.mathdoc.fr/item/MT_2005_8_2_a6/