Asymptotic Analysis of Oscillating Random Walks with Two Levels of Switching
Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 137-167

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain complete asymptotic expansions for the prestationary distribution of an oscillating random walk $X_n$ with two levels of switching $a0$ and $b>0$ in the case when the numbers $|a|$ and $b$ increase in proportion with $\sqrt n$ as $n\to\infty$.
@article{MT_2005_8_2_a4,
     author = {D. K. Kim},
     title = {Asymptotic {Analysis} of {Oscillating} {Random} {Walks} with {Two} {Levels} of {Switching}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {137--167},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2005_8_2_a4/}
}
TY  - JOUR
AU  - D. K. Kim
TI  - Asymptotic Analysis of Oscillating Random Walks with Two Levels of Switching
JO  - Matematičeskie trudy
PY  - 2005
SP  - 137
EP  - 167
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2005_8_2_a4/
LA  - ru
ID  - MT_2005_8_2_a4
ER  - 
%0 Journal Article
%A D. K. Kim
%T Asymptotic Analysis of Oscillating Random Walks with Two Levels of Switching
%J Matematičeskie trudy
%D 2005
%P 137-167
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2005_8_2_a4/
%G ru
%F MT_2005_8_2_a4
D. K. Kim. Asymptotic Analysis of Oscillating Random Walks with Two Levels of Switching. Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 137-167. http://geodesic.mathdoc.fr/item/MT_2005_8_2_a4/