Spiral Dispositions of Nonnegative Integers at Lattice Points
Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 49-68
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider four natural dispositions of nonnegative integers at the points of the Gaussian (square) and Eisenstein (hexagonal) lattices, of the nonnegative quadrant of the Gaussian lattice on the complex plane, and of the cubic lattice in the three-dimensional Euclidean space. All four dispositions give some representations of the set of naturals in the form of a finite set of polynomials in the position coordinates of a natural number. We prove that, for the first three dispositions, all primes are “visible” from the origin.
@article{MT_2005_8_2_a2,
author = {V. N. Berestovskii},
title = {Spiral {Dispositions} of {Nonnegative} {Integers} at {Lattice} {Points}},
journal = {Matemati\v{c}eskie trudy},
pages = {49--68},
year = {2005},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2005_8_2_a2/}
}
V. N. Berestovskii. Spiral Dispositions of Nonnegative Integers at Lattice Points. Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 49-68. http://geodesic.mathdoc.fr/item/MT_2005_8_2_a2/
[1] Berestovskii V. N., Bumina E. A., “Tselochislennye reshetki i prostye chisla”, Vestnik Omskogo universiteta, no. 3, Omskii gos. un-t, Omsk, 1998, 13–15
[2] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1972
[3] Gardner M., Puteshestvie vo vremeni, Mir, M., 1990
[4] Zenkin A. A., Kognitivnaya kompyuternaya grafika, Nauka, M., 1991
[5] Klein F., Elementarnaya matematika s tochki zreniya vysshei. T. 1: Arifmetika. Algebra. Analiz, Nauka, M., 1987
[6] Berestovskii V. N., Disposition of Nonnegative Integer Numbers at the Nodes of Integer Lattice, Preprint Series (45), Max Planck Institut für Mathematik, Bonn, 2004