The Notion of a~Trace on Order-Unit Spaces and the~Space of Integrable Elements
Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 39-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some definitions are given of the notion of a trace on an order-unit space, interrelations of the definitions are studied, and the space of integrable elements is constructed. Using one of the definitions of a trace, we prove that the predual of an order-unit space is isometrically isomorphic to the space of trace-integrable elements.
@article{MT_2005_8_2_a1,
     author = {M. A. Berdikulov},
     title = {The {Notion} of {a~Trace} on {Order-Unit} {Spaces} and {the~Space} of {Integrable} {Elements}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {39--48},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2005_8_2_a1/}
}
TY  - JOUR
AU  - M. A. Berdikulov
TI  - The Notion of a~Trace on Order-Unit Spaces and the~Space of Integrable Elements
JO  - Matematičeskie trudy
PY  - 2005
SP  - 39
EP  - 48
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2005_8_2_a1/
LA  - ru
ID  - MT_2005_8_2_a1
ER  - 
%0 Journal Article
%A M. A. Berdikulov
%T The Notion of a~Trace on Order-Unit Spaces and the~Space of Integrable Elements
%J Matematičeskie trudy
%D 2005
%P 39-48
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2005_8_2_a1/
%G ru
%F MT_2005_8_2_a1
M. A. Berdikulov. The Notion of a~Trace on Order-Unit Spaces and the~Space of Integrable Elements. Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 39-48. http://geodesic.mathdoc.fr/item/MT_2005_8_2_a1/

[1] Ayupov Sh. A., Klassifikatsiya i predstavlenie uporyadochennykh iordanovykh algebr, FAN, Tashkent, 1986

[2] Berdikulov M. A., “Sledy na iordanovykh algebrakh”, Izv. AN UzSSR, Ser. fiz.-mat. nauk, 3 (1986), 11–15 | Zbl

[3] Berdikulov M. A., “O kharakterizatsii JBW-algebr sredi prostranstv s poryadkovoi edinitsei”, Tr. mezhdunar. konf. «Differentsialnye uravneniya s chastnymi proizvodnymi i rodstvennye problemy analiza i informatiki», Tez. dokl., t. II (16–19 noyabrya 2004 g.), izd-vo ChP «Zhumaev Zh. N.», Tashkent, 2004, 148–150

[4] Berdikulov M. A., Odilov S., “Obobschennye spin-faktory”, Uzbekskii mat. zhurn., 1 (1995), 12–17

[5] Alfsen E. M. and Shultz F. W., Noncommutative spectral theory for affine function spaces on convex sets, Mem. Amer. Math. Soc., 172, 1976 | MR | Zbl

[6] Alfsen E. M. and Shultz F. W., “State spaces of Jordan algebras”, Acta Math., 140:3–4 (1978), 155–190 | DOI | MR | Zbl

[7] Alfsen E. M. and Shultz F. W., “On noncommutative spectral theory and Jordan algebras”, Proc. London Math. Soc. (3), 38 (1979), 497–516 | DOI | MR | Zbl

[8] Pedersen G. K. and Størmer E. A., “Traces on Jordan algebras”, Canad. J. Math., 34:2 (1982), 370–373 | MR | Zbl