Geometric Symbol Calculus for Pseudodifferential Operators.~II
Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 176-201
Voir la notice de l'article provenant de la source Math-Net.Ru
A connection on a manifold allows us to define the full symbol of a pseudodifferential operator in an invariant way. The latter is called the geometric symbol to distinguish it from the coordinate-wise symbol. The traditional calculus is developed for geometric symbols: an expression of the geometric symbol through the coordinate-wise symbol, formulas for the geometric symbol of the product of two operators, and of the dual operator. The second part considers operators on vector bundles.
@article{MT_2005_8_1_a5,
author = {V. A. Sharafutdinov},
title = {Geometric {Symbol} {Calculus} for {Pseudodifferential} {Operators.~II}},
journal = {Matemati\v{c}eskie trudy},
pages = {176--201},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2005_8_1_a5/}
}
V. A. Sharafutdinov. Geometric Symbol Calculus for Pseudodifferential Operators.~II. Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 176-201. http://geodesic.mathdoc.fr/item/MT_2005_8_1_a5/