Asymptotics of the Errors of Complicated Cubature Formulas
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 109-125

Voir la notice de l'article provenant de la source Math-Net.Ru

Convergence is studied of complicated cubature formulas at an arbitrary function of the classes $W_p^m(\Omega)$. Some formulas are deduced for the principal terms of integration errors. As a rule, the lattices of nodes are not assumed to be rectangular. The results are generalized to weighted cubature formulas.
@article{MT_2004_7_2_a4,
     author = {V. I. Polovinkin},
     title = {Asymptotics of the {Errors} of {Complicated} {Cubature} {Formulas}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {109--125},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a4/}
}
TY  - JOUR
AU  - V. I. Polovinkin
TI  - Asymptotics of the Errors of Complicated Cubature Formulas
JO  - Matematičeskie trudy
PY  - 2004
SP  - 109
EP  - 125
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_2_a4/
LA  - ru
ID  - MT_2004_7_2_a4
ER  - 
%0 Journal Article
%A V. I. Polovinkin
%T Asymptotics of the Errors of Complicated Cubature Formulas
%J Matematičeskie trudy
%D 2004
%P 109-125
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_2_a4/
%G ru
%F MT_2004_7_2_a4
V. I. Polovinkin. Asymptotics of the Errors of Complicated Cubature Formulas. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 109-125. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a4/