Asymptotics of the Errors of Complicated Cubature Formulas
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 109-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Convergence is studied of complicated cubature formulas at an arbitrary function of the classes $W_p^m(\Omega)$. Some formulas are deduced for the principal terms of integration errors. As a rule, the lattices of nodes are not assumed to be rectangular. The results are generalized to weighted cubature formulas.
@article{MT_2004_7_2_a4,
author = {V. I. Polovinkin},
title = {Asymptotics of the {Errors} of {Complicated} {Cubature} {Formulas}},
journal = {Matemati\v{c}eskie trudy},
pages = {109--125},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a4/}
}
V. I. Polovinkin. Asymptotics of the Errors of Complicated Cubature Formulas. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 109-125. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a4/