On Smoothness of a~Solution to a~Boundary Value Problem with Fractional Order Boundary Operator
Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 189-199
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a boundary value problem for the Laplace equation with a fractional derivative in the boundary condition. We prove the theorem of smoothness of a solution in the Nikol'skiĭ classes.
@article{MT_2004_7_1_a6,
author = {B. K. Turmetov},
title = {On {Smoothness} of {a~Solution} to {a~Boundary} {Value} {Problem} with {Fractional} {Order} {Boundary} {Operator}},
journal = {Matemati\v{c}eskie trudy},
pages = {189--199},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2004_7_1_a6/}
}
B. K. Turmetov. On Smoothness of a~Solution to a~Boundary Value Problem with Fractional Order Boundary Operator. Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 189-199. http://geodesic.mathdoc.fr/item/MT_2004_7_1_a6/