On the~Accuracy of~Gaussian Approximation in Hilbert Space
Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 91-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a continuation of the authors' paper [1] with a new approach to studying the accuracy of order $O(1/n)$ of Gaussian approximation in Hilbert space. In contrast to [1], we now study a more general case of the class of sets on which the probability measures are compared, namely, the class of balls with arbitrary centers. The resultant bound depends on the thirteen greatest eigenvalues of the covariance operator $T$ in explicit form; moreover, this dependence is sharper as compared to the bound of [2].
@article{MT_2004_7_1_a4,
     author = {S. V. Nagaev and V. I. Chebotarev},
     title = {On {the~Accuracy} {of~Gaussian} {Approximation} in {Hilbert} {Space}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {91--152},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_1_a4/}
}
TY  - JOUR
AU  - S. V. Nagaev
AU  - V. I. Chebotarev
TI  - On the~Accuracy of~Gaussian Approximation in Hilbert Space
JO  - Matematičeskie trudy
PY  - 2004
SP  - 91
EP  - 152
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_1_a4/
LA  - ru
ID  - MT_2004_7_1_a4
ER  - 
%0 Journal Article
%A S. V. Nagaev
%A V. I. Chebotarev
%T On the~Accuracy of~Gaussian Approximation in Hilbert Space
%J Matematičeskie trudy
%D 2004
%P 91-152
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_1_a4/
%G ru
%F MT_2004_7_1_a4
S. V. Nagaev; V. I. Chebotarev. On the~Accuracy of~Gaussian Approximation in Hilbert Space. Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 91-152. http://geodesic.mathdoc.fr/item/MT_2004_7_1_a4/

[1] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986

[2] Zalesskii B. A., Sazonov V. V., Ulyanov V. V., “Normalnaya approksimatsiya v gilbertovom prostranstve. I–II”, Teoriya veroyatnostei i ee primeneniya, 33:2 (1988), 225–245 ; 33:3, 508–521 | MR | MR

[3] Zalesskii B. A., Sazonov V. V., Ulyanov V. V., “Pravilnaya otsenka tochnosti normalnogo priblizheniya v gilbertovom prostranstve”, Teoriya veroyatnostei i ee primeneniya, 33:4 (1988), 753–754 | MR

[4] Zalesskii B. A., Sazonov V. V., Ulyanov V. V., “Pravilnaya otsenka skorosti skhodimosti v tsentralnoi predelnoi teoreme v gilbertovom prostranstve”, Mat. sb., 180:12 (1989), 1587–1613 | Zbl

[5] Kulbak S., Teoriya informatsii i statistika, Nauka, M., 1967

[6] Nagaev S. V., “O skorosti skhodimosti k normalnomu zakonu v gilbertovom prostranstve”, Teoriya veroyatnostei i ee primeneniya, 30:1 (1985), 19–32 | MR

[7] Nagaev S. V., “O novom podkhode k izucheniyu raspredeleniya normy sluchainogo elementa v gilbertovom prostranstve”, Pyataya Vilnyusskaya mezhdunarodnaya konf. po teorii veroyatnostei i matematicheskoi statistiki, Tez. dokl., t. 4, Mokslas, Vilnyus, 1989, 77–78

[8] Nagaev S. V., “O veroyatnostnykh i momentnykh neravenstvakh dlya zavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 45:1 (2000), 194–202

[9] Nagaev S. V., Chebotarev V. I., “O zavisimosti otsenki skorosti skhodimosti k normalnomu zakonu ot kovariatsionnogo operatora. Sluchai neodinakovo raspredelennykh slagaemykh”, Teoriya veroyatnostei i ee primeneniya, 28:3 (1983), 599–600

[10] Nagaev S. V., Chebotarev V. I., Utochnenie otsenki pogreshnosti normalnoi approksimatsii v gilbertovom prostranstve, Preprint, No 84, IM SO AN SSSR, Novosibirsk, 1984

[11] Nagaev S. V., Chebotarev V. I., “Utochnenie otsenki pogreshnosti normalnoi approksimatsii v gilbertovom prostranstve”, Sib. mat. zhurn., 27:3 (1986), 154–173

[12] Nagaev S. V., Chebotarev V. I., “Ob asimptoticheskom razlozhenii tipa Bergstrema v gilbertovom prostranstve”, Asimptoticheskii analiz raspredelenii sluchainykh protsessov, Tr. IM SO AN SSSR, 13, Nauka, Novosibirsk, 1989, 66–77

[13] Nagaev S. V., Chebotarev V. I., “O razlozhenii Edzhvorta v gilbertovom prostranstve”, Predelnye teoremy dlya sluchainykh protsessov i ikh primeneniya, Tr. IM SO RAN, 20, Izd-vo In-ta matematiki, Novosibirsk, 1993, 170–203

[14] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972

[15] Sanov P. P., “O veroyatnosti bolshikh uklonenii sluchainykh velichin”, Mat. sb., 42 (84) (1957), 11–44 | MR | Zbl

[16] Senatov V. V., “Kachestvennye effekty v otsenkakh skorosti skhodimosti v tsentralnoi predelnoi teoreme v mnogomernykh prostranstvakh”, Tr. Mat. in-ta im. V. A. Steklova, 215, 1997, 3–239 | MR | Zbl

[17] Chebotarev V. P., Gaussova approksimatsiya v gilbertovom prostranstve i asimptoticheskie razlozheniya, Dis. d-ra fiz.-mat. nauk, 01.01.05, Khabarovsk, 2002

[18] Yurnnskni V. V., “O tochnosti normalnogo priblizheniya veroyatnosti popadaniya v shar”, Teoriya veroyatnostei i ee primeneniya, 27:2 (1982), 270–278 | MR | Zbl

[19] Bentkus V., Götze F., Optimal Rates of Convergence in Functional Limit Theorems for Quadratic Forms, Preprint 95-091, Universität Bielefeld, Bielefeld, 1995

[20] Bentkus V., Götze F., “Optimal rates of convergence in the CLT for quadratic forms”, Ann. Probab., 24:1 (1996), 466–490 | DOI | MR | Zbl

[21] Bentkus V., Götze F., “On the lattice point problem for ellipsoids”, Acta Arith., 80:2 (1997), 101–125 | MR | Zbl

[22] Bentkus V., Götze F., “Uniform rates of convergence in the CLT for quadratic forms in multidimensional spaces”, Probab. Theory Relat. Fields, 109:3 (1997), 367–416 | DOI | MR | Zbl

[23] Bentkus V., Götze F., Optimal Bounds in pop-Gaussian Limit Theorems for $U$-statistics, Preprint 97-077 SFB 343, Universität Bielefeld, Bielefeld, 1997

[24] Bentkus V., Götze F., “Optimal bounds in non-Gaussian limit theorems for $U$-statistics”, Ann. Probab., 27:1 (1999), 454–521 | DOI | MR | Zbl

[25] Chernoff H., “A measure of asymptotic effeciency for tests”, Ann. Math. Statist., 23 (1952), 493–507 | DOI | MR | Zbl

[26] Esseen C.-G., “Fourier analysis of distribution function. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl

[27] Götze F., Ul'yanov V. V., Uniform Approximation in the CLT for Balls in Euclidian Spaces, Preprint 00-034, Universität Bielefeld, Bielefeld, 2000 ; Теория вероятностей и ее применения (в печати) | Zbl

[28] Nagaev S. V., Concentration Functions and Approximation with Infinitely Divisible Laws in Hilbert Space, Preprint 90-094, Universität Bielefeld, Bielefeld, 1990 | MR | Zbl

[29] Nagaev S. V., “On estimates of the rate of convergence in the CLT in a Hilbert space”, Workshop on Limit Theorems and Nonparametric Statistics, Abstracts of commun. (August 24–28), Bielefeld, 1992, 1–3

[30] Nagaev S. V., Chebotarev V. I., “On the accuracy of Gaussian approximation in Hilbert space”, Acta Appl. Math., 58 (1999), 189–215 | DOI | MR | Zbl

[31] Nagaev S. V., Chebotarev V. I., On the Estimate of Accuracy of Normal Approximation in Hilbert Space, Research Report N01/55, The Russian Academy of Sciences, Far-East. Branch, Computing Center, Khabarovsk, 2001

[32] Prawitz H., “Limits for a distribution, if the characteristic function is given in a finite domain”, Scand. Actuar. J., 55 (1973), 138–154 | MR

[33] Sazonov V. V., Normal Approximation — Some Recent Advances, Lecture Notes in Math., 879, Springer-Verlag, Berlin; Heidelberg; New York, 1981 | MR | Zbl

[34] Sazonov V. V., Ul'yanov V. V., “An improved estimate of the accuracy of the Gaussian approximation in Hilbert space”, New Trends in Probability and Statistics, Proc. 23rd Bakuriani Colloq. in Honour of Yu. V. Prokhorov, Mokslas, VSP, Vilnyus, 1991, 123–136 | MR