Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2004_7_1_a2, author = {\`E. Yu. Emel'yanov}, title = {Regularity {Conditions} for {Markov} {Semigroups} on {Abstract} $L^1${-Spaces}}, journal = {Matemati\v{c}eskie trudy}, pages = {50--82}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2004_7_1_a2/} }
È. Yu. Emel'yanov. Regularity Conditions for Markov Semigroups on Abstract $L^1$-Spaces. Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 50-82. http://geodesic.mathdoc.fr/item/MT_2004_7_1_a2/
[1] Gorokhova S. G., Emelyanov E. Yu., “Dostatochnoe uslovie poryadkovoi ogranichennosti attraktora polozhitelnogo ergodichnogo operatora, deistvuyuschego v banakhovoi reshetke”, Mat. trudy, 2:2 (1999), 3–11
[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962 | MR
[3] Lyubich M. Yu., Vvedenie v teoriyu banakhovykh predstavlenii grupp, Izd-vo Kharkovskogo un-ta, Kharkov, 1985
[4] Fong By Kuok, “Asimptoticheskaya pochti periodichnost i kompaktifitsiruyuschie predstavleniya polugrupp”, Ukr. mat. zhurn., 38:6 (1986), 688–692 | MR | Zbl
[5] Bartoszek W., “Asymptotic periodicity of the iterates of positive contractions on Banach lattices”, Studia Math., 91:3 (1988), 179–188 | MR | Zbl
[6] Boyarsky A., “Randomness implies order”, J. Math. Anal. Appl., 76 (1980), 483–497 | DOI | MR | Zbl
[7] Calderon A., “Sur les measures invariantes”, C. R. Acad. Sci. Paris Ser. I Math., 240 (1955), 1960–1962 | MR | Zbl
[8] Derriennic Y., Krengel U., “Subadditive mean ergodic theorems”, Ergodic Theory Dynam. Systems, 1:1 (1981), 33–48 | DOI | MR | Zbl
[9] Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer-Verlag, New York; Berlin, 1984 | MR | Zbl
[10] Dowker Y. N., “On measurable transformations in finite measure spaces”, Ann. of Math. (2), 62 (1955), 504–516 | DOI | MR | Zbl
[11] Emel'yanov È. Yu., “Invariant densities and mean ergodicity of Markov operators”, Israel J. Math., 136 (2003), 373–379 | DOI | MR
[12] Emel'yanov È. Yu., Wolff M. P. H., “Quasi-constricted linear operators on Banach spaces”, Studia Math., 144:2 (2001), 169–179 | DOI | MR
[13] Emel'yanov È. Yu., Wolff M. P. H., Mean Lower Bounds for Markov Operators, Preprint, No 98, Inst. Mat. Sobolev, Novosibirsk, 2002 | MR
[14] Emel'yanov È. Yu., Wolff M. P. H., “Quasi-constricted linear representations of abelian semigroups on Banach spaces”, Math. Nachr., 233–234 (2002), 103–110 | 3.3.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[15] Foguel S. R., The Ergodic Theory of Markov Processes, D. Van Nostrand Company, Inc., Princeton; Toronto; New York; London, 1969 | MR | Zbl
[16] Hajian A., Kakutani S., “Weakly wandering sets and invariant measures”, Trans. Amer. Math. Soc., 110 (1964), 136–151 | DOI | MR | Zbl
[17] Helmberg H., “On the converse of Hopf's ergodic theorem”, Z. Wahrsch. Verw. Gebiete., 21 (1972), 77–80 | DOI | MR | Zbl
[18] Komornik J., “Asymptotic periodicity of the iterates of weakly constrictive Markov operators”, Tôhoku Math. J. (2), 38:1 (1986), 15–27 | DOI | MR | Zbl
[19] Komornik J., “Asymptotic periodicity of Markov and related operators”, Dynamics Reported, Dynam. Report. Expositions Dynam. Systems (N.S.), Springer-Verlag, Berlin, 1993, 31–68 | MR | Zbl
[20] Komornik J., Lasota A., “Asymptotic decomposition of Markov operators”, Bull. Polish Acad. Sci. Math., 35:5–6 (1987), 321–327 | MR | Zbl
[21] Kornfeld I., Lin M., “Weak almost periodicity of $L_1$-contractions and coboundaries of nonsingular transformations”, Studia Math., 138:3 (2000), 225–240 | MR | Zbl
[22] Krengel U., Ergodic Theorems, Walter de Gruyter, Berlin; New York, 1985 | MR | Zbl
[23] Lasota A., “Statistical stability of deterministic systems”, Lecture Notes in Math., 1017, Springer, Berlin, 1983, 386–419 | MR
[24] Lasota A., Mackey M. C., Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd edition, Applied Mathematical Sciences, 97, Springer-Verlag, New York, 1994 | MR | Zbl
[25] Lasota A., Socala J., “Asymptotic properties of constrictive Markov operators”, Bull. Polish Acad. Sci. Math., 35:1–2 (1987), 71–76 | MR | Zbl
[26] Lasota A., Li T. Y., Yorke J. A., “Asymptotic periodicity of the iterates of Markov operators”, Trans. Amer. Math. Soc., 286 (1984), 751–764 | DOI | MR | Zbl
[27] de Leeuw K., Glicksberg I., “The decomposition of certain group representations”, J. Analyse Math., 15 (1965), 135–192 | DOI | MR | Zbl
[28] Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin; Heidleberg; New York, 1991 | MR | Zbl
[29] Phong V. Q., “Almost periodic and strongly stable semigroups of operators”, Banach Center Publications, 38, Polish Acad. Sci., Warsaw, 1997, 401–426 | MR | Zbl
[30] Rabiger F., “Attractors and asymptotic periodicity of positive operators on Banach lattices”, Forum Math., 7 (1995), 665–683 | MR
[31] Schaefer H. H., “On positive contractions in $L^p$-spaces”, Trans. Amer. Math. Soc., 257 (1980), 261–268 | DOI | MR
[32] Schaefer H. H., Wolff M. R. H., Topological Vector Spaces, 2nd edition, Graduate Texts in Mathematics, 3, Springer-Verlag, New York, 1999 | MR
[33] Sine R., “A mean ergodic theorem”, Proc. Amer. Math. Soc., 24:2 (1970), 438–439 | DOI | MR | Zbl
[34] Sine R., “A note on the ergodic properties of homeomorphisms”, Proc. Amer. Math. Soc., 57:1 (1976), 169–172 | DOI | MR | Zbl
[35] Sine R., “Constricted systems”, Rocky Mountain J. Math., 21:4 (1991), 1373–1383 | DOI | MR | Zbl
[36] Socala J., “On the existence of invariant densities for Markov operators”, Ann. Polon. Math., 48:1 (1988), 51–56 | MR | Zbl
[37] Sucheston L., “On existence of finite invariant measures”, Math. Z., 86 (1964), 327–336 | DOI | MR | Zbl