Decidable Boolean Algebras of Characteristic~$(1,0,1)$
Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every 2-constructive Boolean algebra with elementary characteristic $(1,0,1)$ is strongly constructivizable (decidable). This completes the study of the relation between $n$-constructibility and strong constructibility for Boolean algebras of characteristics $(0,*,*)$ and $(1,*,*)$. In addition, we give a description for 3-constructive Boolean algebras by means of a $\Delta^0_2$-computable invariant.
@article{MT_2004_7_1_a0,
     author = {P. E. Alaev},
     title = {Decidable {Boolean} {Algebras} of {Characteristic~}$(1,0,1)$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_1_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Decidable Boolean Algebras of Characteristic~$(1,0,1)$
JO  - Matematičeskie trudy
PY  - 2004
SP  - 3
EP  - 12
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_1_a0/
LA  - ru
ID  - MT_2004_7_1_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Decidable Boolean Algebras of Characteristic~$(1,0,1)$
%J Matematičeskie trudy
%D 2004
%P 3-12
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_1_a0/
%G ru
%F MT_2004_7_1_a0
P. E. Alaev. Decidable Boolean Algebras of Characteristic~$(1,0,1)$. Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MT_2004_7_1_a0/