Decidable Boolean Algebras of Characteristic~$(1,0,1)$
Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that every 2-constructive Boolean algebra with elementary characteristic $(1,0,1)$ is strongly constructivizable (decidable). This completes the study of the relation between $n$-constructibility and strong constructibility for Boolean algebras of characteristics $(0,*,*)$ and $(1,*,*)$. In addition, we give a description for 3-constructive Boolean algebras by means of a $\Delta^0_2$-computable invariant.
@article{MT_2004_7_1_a0,
author = {P. E. Alaev},
title = {Decidable {Boolean} {Algebras} of {Characteristic~}$(1,0,1)$},
journal = {Matemati\v{c}eskie trudy},
pages = {3--12},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2004_7_1_a0/}
}
P. E. Alaev. Decidable Boolean Algebras of Characteristic~$(1,0,1)$. Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MT_2004_7_1_a0/