Collective Pursuit with Integral Constraints on the~Controls of~Players
Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 66-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is a linear differential game of several persons with integral constraints on the controls of the players. Pursuit terminates if a solution to at least one of the equations describing the differential game hits the origin at some instant of time. We establish a necessary and sufficient condition of terminating pursuit from all points of the space in the case of a single pursuer and a sufficient condition in the case of many pursuers.
@article{MT_2003_6_2_a2,
     author = {G. I. Ibragimov},
     title = {Collective {Pursuit} with {Integral} {Constraints} on {the~Controls} {of~Players}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {66--79},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_2_a2/}
}
TY  - JOUR
AU  - G. I. Ibragimov
TI  - Collective Pursuit with Integral Constraints on the~Controls of~Players
JO  - Matematičeskie trudy
PY  - 2003
SP  - 66
EP  - 79
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_2_a2/
LA  - ru
ID  - MT_2003_6_2_a2
ER  - 
%0 Journal Article
%A G. I. Ibragimov
%T Collective Pursuit with Integral Constraints on the~Controls of~Players
%J Matematičeskie trudy
%D 2003
%P 66-79
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_2_a2/
%G ru
%F MT_2003_6_2_a2
G. I. Ibragimov. Collective Pursuit with Integral Constraints on the~Controls of~Players. Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 66-79. http://geodesic.mathdoc.fr/item/MT_2003_6_2_a2/

[1] Aizeke R., Differentsialnye igry, Mir, M., 1967

[2] Ibragimov G. I., “Ob odnoi igre optimalnogo presledovaniya neskolkimi ob'ektami odnogo”, Prikladnaya mat. i mekh., 62:2 (1998), 199–205 | MR | Zbl

[3] Nikolskii M. S., “Pryamoi metod v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami”, Upravlyaemye sistemy, Sb. nauch. tr. IM SO AN SSSR, vyp. 2, Novosibirsk, 1969, 49–59

[4] Patsko V. S., “Differentsialnaya igra kachestva vtorogo poryadka”, Prikladnaya mat. i mekh., 46:4 (1982), 596–604 | MR | Zbl

[5] Rikhsiev B. B., “Ob odnoi lineinoi zadache presledovaniya mnogikh lits s integralnymi ogranicheniyami na upravleniya igrokov”, Neklassicheskie zadachi matematicheskoi fiziki, Fan, Tashkent, 1985, 184–202

[6] Satimov N. Yu., Rikhsiev B. B., Ibragimov G. I., “Ob odnoi differentsialnoi igre mnogikh lits s integralnymi ogranicheniyami”, Aktualnye voprosy teorii optimalnogo upravleniya i differentsialnykh igr, Fan, Tashkent, 1996, 89–94

[7] Satimov N. Yu., Rikhsiev B. B., Khamdamov A. A., “O zadache presledovaniya dlya lineinykh differentsialnykh i diskretnykh igr mnogikh lits”, Mat. sb., 118:4 (1982), 456–469 | MR

[8] Satimov N. Yu., Khamdamov A. A., Fazylov A. Z., “Differentsialnye igry presledovaniya mnogikh lits s integralnymi ogranicheniyami”, Dokl. AN UzSSR, 1981, no. 10, 3–4

[9] Trenogii V. A., Funktsionalnyi analiz, Nauka, M., 1980

[10] Ushakov V. N., “Ekstremalnye strategii v differentsialnykh igrakh s integralnymi ogranicheniyami”, Prikladnaya mat. i mekh., 36:1 (1972), 15–23 | Zbl