The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 182-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the problem of finding the number of nonequivalent cyclic $n$-sheeted coverings over a Seifert fiber space without exceptional fibers. We obtain exact formulas for determining the number of nonequivalent cyclic $n$-sheeted coverings over an arbitrary manifold that belongs to the above class.
@article{MT_2003_6_1_a7,
     author = {M. N. Shmatkov},
     title = {The~Number of {Nonequivalent} {Cyclic} {Coverings} over {a~Seifert} {Fiber} {Space}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/}
}
TY  - JOUR
AU  - M. N. Shmatkov
TI  - The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space
JO  - Matematičeskie trudy
PY  - 2003
SP  - 182
EP  - 201
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/
LA  - ru
ID  - MT_2003_6_1_a7
ER  - 
%0 Journal Article
%A M. N. Shmatkov
%T The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space
%J Matematičeskie trudy
%D 2003
%P 182-201
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/
%G ru
%F MT_2003_6_1_a7
M. N. Shmatkov. The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 182-201. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/

[1] Zeifert G., Trelfall V., Topologiya, GONTI, M.–L., 1938

[2] Massn U., Stollings Dzh., Algebraicheskaya topologiya. Vvedenie, Mir, M., 1977

[3] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991

[4] Mednykh A. D., “K zadache Gurvitsa o chisle neekvivalentnykh nakrytii nad kompaktnoi rimanovoi poverkhnostyu”, Sib. mat. zhurn., 23:3 (1982), 155–160 | MR | Zbl

[5] Mednykh A. D., “Neekvivalentnye nakrytiya rimanovykh poverkhnostei s zadannym tipom vetvleniya”, Sib. mat. zhurn., 25:4 (1984), 120–142 | MR | Zbl

[6] Mednykh A. D., Pozdnyakova G. G., “O chisle neekvivalentnykh nakrytii nad kompaktnoi neorientiruemoi poverkhnostyu”, Sib. mat. zhurn., 27:1 (1986), 123–131 | MR | Zbl

[7] Apostol T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York; Heidelberg; Berlin, 1976 | MR

[8] Hall P., “The Eulerian functions of a group”, Quart. J. Math. Oxford, 7 (1936), 134–151 | DOI | Zbl

[9] Hurwitz A., “Riemann'sche Elächen mit gegeben Verzweigungspunkten”, Math. Ann., 39 (1891), 1–61 | DOI | MR

[10] Hurwitz A., “Über die Awzahl der Riemannschen Elächen mit gegeben Verzweigungspunkten”, Math. Ann., 55 (1902), 53–66 | DOI | MR | Zbl

[11] Jones G. A., “Enumeration of homomorphisms and surface-coverings”, Quart. J. Math. Oxford Ser. (2), 46:184 (1995), 485–507 | DOI | MR | Zbl

[12] Jones G. A., “Counting subgroups of non-Euclidean crystallographic groups”, Math. Scand., 84:1 (1999), 23–39 | MR | Zbl

[13] Lloyd E., “Riemann surface transformation groups”, J. Combinatorial Theory, Ser. A, 13 (1972), 17–27 | DOI | MR | Zbl

[14] Orlik P., Seifert Manifolds, Lecture Notes in Math., 291, Springer-Verlag, New York; Heidelberg; Berlin, 1972 | MR | Zbl

[15] Röhrl H., “Unbounded coverings of Riemann surfaces and extensions of ring of meromorphic functions”, Trans. Amer. Math. Soc., 107:2 (1963), 320–343 | DOI | MR