The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 182-201
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is devoted to the problem of finding the number of nonequivalent cyclic $n$-sheeted coverings over a Seifert fiber space without exceptional fibers. We obtain exact formulas for determining the number of nonequivalent cyclic $n$-sheeted coverings over an arbitrary manifold that belongs to the above class.
@article{MT_2003_6_1_a7,
author = {M. N. Shmatkov},
title = {The~Number of {Nonequivalent} {Cyclic} {Coverings} over {a~Seifert} {Fiber} {Space}},
journal = {Matemati\v{c}eskie trudy},
pages = {182--201},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/}
}
M. N. Shmatkov. The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 182-201. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/