The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 182-201

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the problem of finding the number of nonequivalent cyclic $n$-sheeted coverings over a Seifert fiber space without exceptional fibers. We obtain exact formulas for determining the number of nonequivalent cyclic $n$-sheeted coverings over an arbitrary manifold that belongs to the above class.
@article{MT_2003_6_1_a7,
     author = {M. N. Shmatkov},
     title = {The~Number of {Nonequivalent} {Cyclic} {Coverings} over {a~Seifert} {Fiber} {Space}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/}
}
TY  - JOUR
AU  - M. N. Shmatkov
TI  - The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space
JO  - Matematičeskie trudy
PY  - 2003
SP  - 182
EP  - 201
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/
LA  - ru
ID  - MT_2003_6_1_a7
ER  - 
%0 Journal Article
%A M. N. Shmatkov
%T The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space
%J Matematičeskie trudy
%D 2003
%P 182-201
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/
%G ru
%F MT_2003_6_1_a7
M. N. Shmatkov. The~Number of Nonequivalent Cyclic Coverings over a~Seifert Fiber Space. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 182-201. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a7/