Geometry of a~Doubly Canal Hypersurface in the~Euclidean Space~$\mathbb E^n$
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 169-181

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multidimensional analog in $\mathbb E^n$ to Dupin cyclides, that is, surfaces whose principal curvatures are constant along the corresponding principal directions. We study doubly canal hypersurfaces, i. e., hypersurfaces having two principal curvatures of multiplicities $p$ and $q$ with $p+q=n-1$.
@article{MT_2003_6_1_a6,
     author = {M. A. Cheshkova},
     title = {Geometry of {a~Doubly} {Canal} {Hypersurface} in {the~Euclidean} {Space~}$\mathbb E^n$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {169--181},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a6/}
}
TY  - JOUR
AU  - M. A. Cheshkova
TI  - Geometry of a~Doubly Canal Hypersurface in the~Euclidean Space~$\mathbb E^n$
JO  - Matematičeskie trudy
PY  - 2003
SP  - 169
EP  - 181
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_1_a6/
LA  - ru
ID  - MT_2003_6_1_a6
ER  - 
%0 Journal Article
%A M. A. Cheshkova
%T Geometry of a~Doubly Canal Hypersurface in the~Euclidean Space~$\mathbb E^n$
%J Matematičeskie trudy
%D 2003
%P 169-181
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_1_a6/
%G ru
%F MT_2003_6_1_a6
M. A. Cheshkova. Geometry of a~Doubly Canal Hypersurface in the~Euclidean Space~$\mathbb E^n$. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 169-181. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a6/