Geometry of a~Doubly Canal Hypersurface in the~Euclidean Space~$\mathbb E^n$
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 169-181
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a multidimensional analog in $\mathbb E^n$ to Dupin cyclides, that is, surfaces whose principal curvatures are constant along the corresponding principal directions. We study doubly canal hypersurfaces, i. e., hypersurfaces having two principal curvatures of multiplicities $p$ and $q$ with $p+q=n-1$.
@article{MT_2003_6_1_a6,
author = {M. A. Cheshkova},
title = {Geometry of {a~Doubly} {Canal} {Hypersurface} in {the~Euclidean} {Space~}$\mathbb E^n$},
journal = {Matemati\v{c}eskie trudy},
pages = {169--181},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a6/}
}
M. A. Cheshkova. Geometry of a~Doubly Canal Hypersurface in the~Euclidean Space~$\mathbb E^n$. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 169-181. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a6/