Arithmetic Invariants for a Class of Elliptic Curves
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 155-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the main arithmetic invariants of elliptic curves with complex multiplication. These curves are defined over the field of rational numbers and possess nondegenerate nonsupersingular reduction.
@article{MT_2003_6_1_a5,
     author = {I. S. Rakhimov},
     title = {Arithmetic {Invariants} for {a~Class} of {Elliptic} {Curves}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {155--168},
     year = {2003},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a5/}
}
TY  - JOUR
AU  - I. S. Rakhimov
TI  - Arithmetic Invariants for a Class of Elliptic Curves
JO  - Matematičeskie trudy
PY  - 2003
SP  - 155
EP  - 168
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_1_a5/
LA  - ru
ID  - MT_2003_6_1_a5
ER  - 
%0 Journal Article
%A I. S. Rakhimov
%T Arithmetic Invariants for a Class of Elliptic Curves
%J Matematičeskie trudy
%D 2003
%P 155-168
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/MT_2003_6_1_a5/
%G ru
%F MT_2003_6_1_a5
I. S. Rakhimov. Arithmetic Invariants for a Class of Elliptic Curves. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 155-168. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a5/

[1] Bashmakov M. I., “Kogomologii abelevykh mnogoobrazii”, Uspekhi mat. nauk, 27:6 (168) (1972), 25–66 | MR | Zbl

[2] Bashmakov M. I., Kirillov A. N., “Filtratsiya Lyutts formalnykh grupp”, Izv. AN SSSR. Ser. mat., 39:6 (1975), 1227–1239 | MR | Zbl

[3] Berkovich V. G., “O delenii na izogeniyu tochek ellipticheskikh krivykh”, Mat. sb., 93 (135):3 (1974), 467–486 | MR | Zbl

[4] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985

[5] Kassesl Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[6] Koblits N., $p$-Adicheskie chisla, $p$-adicheskii analiz i $\zeta$-funktsii, Mir, M., 1982

[7] Manii Yu. I., “Krugovye polya i modulyarnye krivye”, Uspekhi mat. nauk, 26:6 (1971), 7–71 | Zbl

[8] Rakhimov I. S., “O pole opredeleniya tochek $p$-go poryadka ellipticheskikh krivykh s kompleksnym umnozheniem”, Uzbekskii mat. zhurn., 5–6 (2000), 62–65 | Zbl

[9] Rakhimov I. S., “O lokalnom pole opredeleniya tochek $p$-to poryadka ellipticheskikh krivykh”, Uzbekskii mat. zhurn., 1 (2001), 41–44

[10] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968

[11] Serr Zh.-P., Abelevy $l$-adicheskie predstavleniya i ellipticheskie krivye, Mir, M., 1973

[12] Serr Zh.-P., Teit Dzh., “Khoroshaya reduktsiya abelevykh mnogoobrazii”, Matematika, 15:5 (1971), 140–165 | Zbl

[13] Faddeev D. K., “O gruppe klassov divizorov na nekotorykh algebraicheskikh krivykh”, Dokl. AN SSSR, 136:2 (1961), 296–298 | MR | Zbl

[14] Faddeev D. K., “Ob invariantakh divizorov dlya krivykh $x^\kappa(1-x)=y^l$ v $l$-adicheskom krugovom pole”, Tr. Mat. in-ta im. V. A. Steklova, 64, 1961, 284–293 | MR | Zbl

[15] Shafarevich I. R., “Obschii zakon vzaimnosti”, Mat. sb., 26:1 (1950), 113–146 | MR | Zbl

[16] Gross V. N., Arithmetic on Elliptic Curves with Complex Multiplication, Lecture Notes in Math., 776, Springer-Verlag, Berlin; Heidelberg; New York, 1980 | MR | Zbl

[17] Serre J.-P., “Groupes de Lie $l$-adiques attaches aux courbes elliptiques”, Colloques Int. Centre Nat. Rech. Sci., 143 (1966), 239–256 | MR | Zbl

[18] Tate J., “Duality theorems in Galois cohomology over number fields”, Proc. Int. Congr. Math. Stockholm, 1963, 288–295 | MR | Zbl

[19] Tate J., Algorithm for Determining the Type of Singular Fiber in an Elliptic Pencil. Modular Functions of One Variable, Lecture Notes in Math., 476, Springer-Verlag, Berlin, 1973 | MR

[20] Tate J., “The arithmethic of elliptic curves”, Invent. Math., 23 (1974), 179–206 | DOI | MR | Zbl