Generic Automorphisms
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 75-97

Voir la notice de l'article provenant de la source Math-Net.Ru

We study generic sequences of automorphisms. For some classes of models (for example, saturated models), we show that every sequence of automorphisms whose length does not exceed the cardinality of the model is the element-wise product of two generic sequences. We also prove that the fixed field of a finite generic sequence of automorphisms of a separably closed field is regularly closed.
@article{MT_2003_6_1_a3,
     author = {K. Zh. Kudaibergenov},
     title = {Generic {Automorphisms}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {75--97},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a3/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - Generic Automorphisms
JO  - Matematičeskie trudy
PY  - 2003
SP  - 75
EP  - 97
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_1_a3/
LA  - ru
ID  - MT_2003_6_1_a3
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T Generic Automorphisms
%J Matematičeskie trudy
%D 2003
%P 75-97
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_1_a3/
%G ru
%F MT_2003_6_1_a3
K. Zh. Kudaibergenov. Generic Automorphisms. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 75-97. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a3/