Sequences of Errors with Boundary Layer in Spaces of Univariate Functions with Fractional Riemann--Liouville Derivatives
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 178-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotics of errors for complicated quadrature formulas and formulas with boundary layer on functions with fractional Riemann–Liouville derivatives summable to some power. It is shown that the formulas under consideration are asymptotically best with respect to the rate of convergence among formulas with arbitrary nodes and weights. The results are illustrated by the examples of trapezoidal and rectangle rules.
@article{MT_2002_5_2_a6,
     author = {V. I. Polovinkin},
     title = {Sequences of {Errors} with {Boundary} {Layer} in {Spaces} of {Univariate} {Functions} with {Fractional} {Riemann--Liouville} {Derivatives}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {178--202},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a6/}
}
TY  - JOUR
AU  - V. I. Polovinkin
TI  - Sequences of Errors with Boundary Layer in Spaces of Univariate Functions with Fractional Riemann--Liouville Derivatives
JO  - Matematičeskie trudy
PY  - 2002
SP  - 178
EP  - 202
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a6/
LA  - ru
ID  - MT_2002_5_2_a6
ER  - 
%0 Journal Article
%A V. I. Polovinkin
%T Sequences of Errors with Boundary Layer in Spaces of Univariate Functions with Fractional Riemann--Liouville Derivatives
%J Matematičeskie trudy
%D 2002
%P 178-202
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a6/
%G ru
%F MT_2002_5_2_a6
V. I. Polovinkin. Sequences of Errors with Boundary Layer in Spaces of Univariate Functions with Fractional Riemann--Liouville Derivatives. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 178-202. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a6/

[1] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967

[2] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1974

[3] Polovinkin V. I., “Vesovye kvadraturnye formuly v periodicheskom sluchae”, Mat. zametki, 3:3 (1968), 319–326 | MR | Zbl

[4] Polovinkin V. I., “Posledovatelnosti kvadraturnykh formul s pogranichnym sloem”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, Tr. seminara S. L. Soboleva, 1, IM SO AN SSSR, Novosibirsk, 1977, 149–158

[5] Polovinkin V. I., “Posledovatelnosti kvadraturnykh formul s pogranichnym sloem i posledovatelnosti tipa Gregori”, Kvadraturnye i kubaturnye formuly. Reshenie funktsionalnykh uravnenii, Metody vychislenii, 12, Izd-vo LGU, L., 1981, 7–25 | MR

[6] Polovinkin V. I., “O nekotorykh optimizatsionnykh zadachakh teorii priblizhennogo integrirovaniya”, Optimizatsiya chislennykh metodov, Tr. mezhdu narodnoi nauchnoi konferentsii, Chast I, IMVTs UfNTs RAN, Ufa, 2000, 146–151

[7] Polovinkin V. I., “Skhodimost kvadraturnykh formul v prostranstvakh drobnykh proizvodnykh”, Kubaturnye formuly i ikh prilozheniya, Tr. VI mezhdunarodnogo seminara, IMVTs UfNTs RAN, BGPU, Ufa, 2001, 95–97

[8] Polovinkin V. I., Sevastyanova N. A., “Uslozhnennye kvadraturnye formuly v prostranstvakh funktsii, imeyuschikh drobnye proizvodnye”, Optimalnye metody vychislenii i ikh primenenie k obrabotke informatsii, 11, Izd-vo Penzenskogo politekhn. in-ta, Penza, 1992, 86–95 | MR

[9] Samko L. B., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh primeneniya, Nauka i tekhnika, Minsk, 1987

[10] Sevastyanova N. A., “Posledovatelnosti funktsionalov s pogranichnym sloem dlya funktsii, imeyuschikh drobnye proizvodnye”, Kubaturnye formuly i ikh prilozheniya, IMVTs UfNTs RAN, Ufa, 1996, 90–104

[11] Sevastyanova N. A., “Posledovatelnosti funktsionalov s pogranichnym sloem v prostranstvakh funktsii s drobnymi proizvodnymi”, Voprosy matematicheskogo analiza, 2, Izd-vo Krasnoyarskogo gos. tekhn. un-ta, Krasnoyarsk, 1997, 106–119 | MR

[12] Sevastyanova N. A., Priblizhennoe integrirovanie funktsii v prostranstvakh drobnykh proizvodnykh, Avtoref. dis. kand. fiz.-mat. nauk: 01.01.01, Izd-vo Krasnoyarskogo gos. un-ta, Krasnoyarsk, 1997

[13] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974

[14] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Izd-vo In-ta matematiki, Novosibirsk, 1996

[15] Sobol I. M., Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969

[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. II, Nauka, M., 1969

[17] Polovinkin V. I., “Approximations of the Bernoulli polynomials by constants and applications to the theory of quadrature formulas”, Siberian Adv. Math., 8:2 (1998), 110–121 | MR | Zbl