Indiscernible Sets in Homogeneous Models
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 170-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the possibility of extending an arbitrary permutation of elements of a given indiscernible set in a homogeneous model (in particular, a homogeneous atomic model) to an automorphism.
@article{MT_2002_5_2_a5,
     author = {K. Zh. Kudaibergenov},
     title = {Indiscernible {Sets} in {Homogeneous} {Models}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {170--177},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a5/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - Indiscernible Sets in Homogeneous Models
JO  - Matematičeskie trudy
PY  - 2002
SP  - 170
EP  - 177
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a5/
LA  - ru
ID  - MT_2002_5_2_a5
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T Indiscernible Sets in Homogeneous Models
%J Matematičeskie trudy
%D 2002
%P 170-177
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a5/
%G ru
%F MT_2002_5_2_a5
K. Zh. Kudaibergenov. Indiscernible Sets in Homogeneous Models. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 170-177. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a5/

[1] Kudaibergenov K. Zh., “Ob atomnykh modelyakh”, Mat. trudy, 3:2 (2000), 111–128 | MR

[2] Kim V., Forking in Simple Unstable Theories, Preprint, University of Notre Dame, Notre Dame, 1995

[3] Kueker D. W., Steitz P. W., Stabilizers of Definable Sets in Homogeneous Models, Preprint, University of Maryland, College Park, 1990

[4] Lachlan A., “On countable stable structures which are homogeneous for a finite relational language”, Israel J. Math., 49:69–153 (1984) | MR

[5] Shelah S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl

[6] Shelah S., “Simple unstable theories”, Ann. Pure Appl. Logic, 19 (1980), 177–203 | MR | Zbl