Indiscernible Sets in Homogeneous Models
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 170-177
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the problem of the possibility of extending an arbitrary permutation of elements of a given indiscernible set in a homogeneous model (in particular, a homogeneous atomic model) to an automorphism.
@article{MT_2002_5_2_a5,
author = {K. Zh. Kudaibergenov},
title = {Indiscernible {Sets} in {Homogeneous} {Models}},
journal = {Matemati\v{c}eskie trudy},
pages = {170--177},
year = {2002},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a5/}
}
K. Zh. Kudaibergenov. Indiscernible Sets in Homogeneous Models. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 170-177. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a5/
[1] Kudaibergenov K. Zh., “Ob atomnykh modelyakh”, Mat. trudy, 3:2 (2000), 111–128 | MR
[2] Kim V., Forking in Simple Unstable Theories, Preprint, University of Notre Dame, Notre Dame, 1995
[3] Kueker D. W., Steitz P. W., Stabilizers of Definable Sets in Homogeneous Models, Preprint, University of Maryland, College Park, 1990
[4] Lachlan A., “On countable stable structures which are homogeneous for a finite relational language”, Israel J. Math., 49:69–153 (1984) | MR
[5] Shelah S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl
[6] Shelah S., “Simple unstable theories”, Ann. Pure Appl. Logic, 19 (1980), 177–203 | MR | Zbl