Polynomial Solutions to the~Lam\'e Equations
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 155-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and study a basis system of polynomial solutions to the multidimensional Lamé equations.
@article{MT_2002_5_2_a4,
     author = {V. V. Karachik},
     title = {Polynomial {Solutions} to {the~Lam\'e} {Equations}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {155--169},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a4/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - Polynomial Solutions to the~Lam\'e Equations
JO  - Matematičeskie trudy
PY  - 2002
SP  - 155
EP  - 169
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a4/
LA  - ru
ID  - MT_2002_5_2_a4
ER  - 
%0 Journal Article
%A V. V. Karachik
%T Polynomial Solutions to the~Lam\'e Equations
%J Matematičeskie trudy
%D 2002
%P 155-169
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a4/
%G ru
%F MT_2002_5_2_a4
V. V. Karachik. Polynomial Solutions to the~Lam\'e Equations. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 155-169. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a4/

[1] Bondarenko B. A., “Bazisnaya sistema polinomialnykh reshenii vektorno-matrichnogo uravneniya Lyame i ego iteratsii”, Voprosy vychisl. i prikl. matematiki, 105, Tashkent, 1998, 45–53

[2] Bondarenko B. A., Filatov A. N., Kvazipolinomialnye funktsii i ikh prilozheniya k zadacham teorii uprugosti, Fan, Tashkent, 1978

[3] Lure A. I., “Polinomialnoe predstavlenie reshenii uravnenii teorii uprugosti”, Problemy mekhaniki tverdogo deformirovannogo tela, Sudostroenie, L., 1970, 251–256

[4] Lure A. I., Teoriya uprugosti, Nauka, M., 1970

[5] Bergman S., “Über der Bestimmunben der elastischen Spannungen and Verschiebungen in einem konvexen Körper”, Math. Ann., 98 (1927), 248–263 | DOI | MR | Zbl

[6] Karachik V. V., “Polynomial solutions to the systems of partial differential equations with constant coefficients”, Yokohama Math. J., 47:2 (2000), 121–142 | MR | Zbl

[7] Protter M. H., “On a class of harmonic polynomials”, Portugal. Math., 10 (1951), 11–22 | MR | Zbl

[8] Teodorescu P. P., “Asupra polinoamelor armonice si biarmonice”, Studia Univ. Babeş-Bolyai, 1 (1963), 821–832 (Romanian) | MR

[9] Teodorescu P. P., Probleme Spatiale in Teoria Elasticitatii, Ed. Acad. Sci., Bucuresti, 1970 (Romanian) | MR