Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2002_5_2_a4, author = {V. V. Karachik}, title = {Polynomial {Solutions} to {the~Lam\'e} {Equations}}, journal = {Matemati\v{c}eskie trudy}, pages = {155--169}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a4/} }
V. V. Karachik. Polynomial Solutions to the~Lam\'e Equations. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 155-169. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a4/
[1] Bondarenko B. A., “Bazisnaya sistema polinomialnykh reshenii vektorno-matrichnogo uravneniya Lyame i ego iteratsii”, Voprosy vychisl. i prikl. matematiki, 105, Tashkent, 1998, 45–53
[2] Bondarenko B. A., Filatov A. N., Kvazipolinomialnye funktsii i ikh prilozheniya k zadacham teorii uprugosti, Fan, Tashkent, 1978
[3] Lure A. I., “Polinomialnoe predstavlenie reshenii uravnenii teorii uprugosti”, Problemy mekhaniki tverdogo deformirovannogo tela, Sudostroenie, L., 1970, 251–256
[4] Lure A. I., Teoriya uprugosti, Nauka, M., 1970
[5] Bergman S., “Über der Bestimmunben der elastischen Spannungen and Verschiebungen in einem konvexen Körper”, Math. Ann., 98 (1927), 248–263 | DOI | MR | Zbl
[6] Karachik V. V., “Polynomial solutions to the systems of partial differential equations with constant coefficients”, Yokohama Math. J., 47:2 (2000), 121–142 | MR | Zbl
[7] Protter M. H., “On a class of harmonic polynomials”, Portugal. Math., 10 (1951), 11–22 | MR | Zbl
[8] Teodorescu P. P., “Asupra polinoamelor armonice si biarmonice”, Studia Univ. Babeş-Bolyai, 1 (1963), 821–832 (Romanian) | MR
[9] Teodorescu P. P., Probleme Spatiale in Teoria Elasticitatii, Ed. Acad. Sci., Bucuresti, 1970 (Romanian) | MR