Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 38-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The regularity properties of solutions to the initial boundary value problem with free boundary for the nonlinear degenerate equation $u_t=\Delta(u^m)$, $m>1$, are studied in the multi-dimensional case. The condition $u=0$ holds on the free boundary whose velocity obeys the Darcy law. The differential properties of the free boundary are established in dependence on the smoothness of the initial data.
@article{MT_2002_5_2_a1,
     author = {B. V. Bazalii and N. V. Krasnoshchek},
     title = {Regularity of {a~Solution} to {the~Multidimensional} {Free} {Boundary} {Problem} for {the~Porous} {Medium} {Equation}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {38--91},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/}
}
TY  - JOUR
AU  - B. V. Bazalii
AU  - N. V. Krasnoshchek
TI  - Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation
JO  - Matematičeskie trudy
PY  - 2002
SP  - 38
EP  - 91
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/
LA  - ru
ID  - MT_2002_5_2_a1
ER  - 
%0 Journal Article
%A B. V. Bazalii
%A N. V. Krasnoshchek
%T Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation
%J Matematičeskie trudy
%D 2002
%P 38-91
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/
%G ru
%F MT_2002_5_2_a1
B. V. Bazalii; N. V. Krasnoshchek. Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 38-91. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/