Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 38-91
Voir la notice de l'article provenant de la source Math-Net.Ru
The regularity properties of solutions to the initial boundary value problem with free boundary for the nonlinear degenerate equation $u_t=\Delta(u^m)$, $m>1$, are studied in the multi-dimensional case. The condition $u=0$ holds on the free boundary whose velocity obeys the Darcy law. The differential properties of the free boundary are established in dependence on the smoothness of the initial data.
@article{MT_2002_5_2_a1,
author = {B. V. Bazalii and N. V. Krasnoshchek},
title = {Regularity of {a~Solution} to {the~Multidimensional} {Free} {Boundary} {Problem} for {the~Porous} {Medium} {Equation}},
journal = {Matemati\v{c}eskie trudy},
pages = {38--91},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/}
}
TY - JOUR AU - B. V. Bazalii AU - N. V. Krasnoshchek TI - Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation JO - Matematičeskie trudy PY - 2002 SP - 38 EP - 91 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/ LA - ru ID - MT_2002_5_2_a1 ER -
B. V. Bazalii; N. V. Krasnoshchek. Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 38-91. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/