Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 38-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The regularity properties of solutions to the initial boundary value problem with free boundary for the nonlinear degenerate equation $u_t=\Delta(u^m)$, $m>1$, are studied in the multi-dimensional case. The condition $u=0$ holds on the free boundary whose velocity obeys the Darcy law. The differential properties of the free boundary are established in dependence on the smoothness of the initial data.
@article{MT_2002_5_2_a1,
     author = {B. V. Bazalii and N. V. Krasnoshchek},
     title = {Regularity of {a~Solution} to {the~Multidimensional} {Free} {Boundary} {Problem} for {the~Porous} {Medium} {Equation}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {38--91},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/}
}
TY  - JOUR
AU  - B. V. Bazalii
AU  - N. V. Krasnoshchek
TI  - Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation
JO  - Matematičeskie trudy
PY  - 2002
SP  - 38
EP  - 91
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/
LA  - ru
ID  - MT_2002_5_2_a1
ER  - 
%0 Journal Article
%A B. V. Bazalii
%A N. V. Krasnoshchek
%T Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation
%J Matematičeskie trudy
%D 2002
%P 38-91
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/
%G ru
%F MT_2002_5_2_a1
B. V. Bazalii; N. V. Krasnoshchek. Regularity of a~Solution to the~Multidimensional Free Boundary Problem for the~Porous Medium Equation. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 38-91. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a1/

[1] Bazalii B. V., Krasnoschëk N. V., “O regulyarnosti resheniya zadachi so svobodnoi granitsei dlya uravneniya $v_t=(v^m)_{xx}$”, Algebra i analiz, 12:2 (2000), 100–130 | MR | Zbl

[2] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, Nauka, M., 1970

[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963

[4] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, Uspekhi mat. nauk, 42:2 (1987), 135–176 | MR | Zbl

[5] Ladyzhenskaya O. A., Solonnnkov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[6] Riekstynsh E. Ya., Asimptoticheskie razlozheniya integralov, Latv. mat. ezhegodnik, 1, Zinatne, Riga, 1974

[7] Shilov G. E., Matematicheskii analiz, Vtoroi spetsialnyi kurs, Fizmatgiz, M., 1965

[8] Angenent S. V., “The porous medium equation in one space dimension”, Trans. Amer. Math. Soc., 38 (1977), 375–403

[9] Caffarelli L. A., Wolanski N. I., “$C^{1+\alpha}$-Regularity of the free boundary for the $n$-dimensional porous media equation”, Comm. Pure Appl. Math., 43:7 (1990), 885–902 | DOI | MR | Zbl

[10] Daskalopoulos P., Hamilton R., “Regularity of the free boundary for the porous medium equation”, J. Amer. Math. Soc., 11:4 (1998), 899–965 | DOI | MR | Zbl

[11] Shimakura N., “Les fonctions de Green pour certains opérateurs paraboliqeues dégénérés dans le demi-espace (The Green functions for certain degenerate parabolic operators in the half-space)”, Proc. Japan Acad. Ser. A Math. Sci., 47 (1971), 699–704 (French) | MR | Zbl