$\omega$-Stable Trigonometries on a Projective Plane
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 135-166
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the well-known Hrushovski construction, we prove that, for every countable group $G$, there exists an $\omega$-stable trigonometry of the group $G\ast F_\omega$, where $F_\omega$ is the free group of countable rank, on a non-Desarguesian projective plane. We also suggest a new approach to constructing generic models.
@article{MT_2002_5_1_a9,
author = {S. V. Sudoplatov},
title = {$\omega${-Stable} {Trigonometries} on a {Projective} {Plane}},
journal = {Matemati\v{c}eskie trudy},
pages = {135--166},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a9/}
}
S. V. Sudoplatov. $\omega$-Stable Trigonometries on a Projective Plane. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 135-166. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a9/