$\omega$-Stable Trigonometries on a Projective Plane
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 135-166

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the well-known Hrushovski construction, we prove that, for every countable group $G$, there exists an $\omega$-stable trigonometry of the group $G\ast F_\omega$, where $F_\omega$ is the free group of countable rank, on a non-Desarguesian projective plane. We also suggest a new approach to constructing generic models.
@article{MT_2002_5_1_a9,
     author = {S. V. Sudoplatov},
     title = {$\omega${-Stable} {Trigonometries} on a {Projective} {Plane}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {135--166},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a9/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - $\omega$-Stable Trigonometries on a Projective Plane
JO  - Matematičeskie trudy
PY  - 2002
SP  - 135
EP  - 166
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a9/
LA  - ru
ID  - MT_2002_5_1_a9
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T $\omega$-Stable Trigonometries on a Projective Plane
%J Matematičeskie trudy
%D 2002
%P 135-166
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_1_a9/
%G ru
%F MT_2002_5_1_a9
S. V. Sudoplatov. $\omega$-Stable Trigonometries on a Projective Plane. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 135-166. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a9/