The~Ideal of Compact Operators in Real Factors of Types~I and~II
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 129-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article we study the ideal of relatively compact operators in a real von Neumann factor. We prove a real analog of the Calkin theorem on the uniform closure and uniqueness of the ideal of relatively compact operators. In addition, we show that, unlike complex factors, in a real semifinite factor, up to isomorphism, there exist, in the discrete case, three, and, in the continuous case, two nonzero uniformly closed two-sided real ideals.
@article{MT_2002_5_1_a8,
author = {A. A. Rakhimov and A. A. Kats and R. A. Dadakhodjaev},
title = {The~Ideal of {Compact} {Operators} in {Real} {Factors} of {Types~I} {and~II}},
journal = {Matemati\v{c}eskie trudy},
pages = {129--134},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a8/}
}
TY - JOUR AU - A. A. Rakhimov AU - A. A. Kats AU - R. A. Dadakhodjaev TI - The~Ideal of Compact Operators in Real Factors of Types~I and~II JO - Matematičeskie trudy PY - 2002 SP - 129 EP - 134 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a8/ LA - ru ID - MT_2002_5_1_a8 ER -
A. A. Rakhimov; A. A. Kats; R. A. Dadakhodjaev. The~Ideal of Compact Operators in Real Factors of Types~I and~II. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 129-134. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a8/