Relative Complexity for Computable Representations of the~Conventional Linear Order on the~Set of Naturals
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 114-128
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present article, we study the relationship between computable representations of the set of naturals with the conventional linear order. Two reducibility relations are introduced on the set of all such representations. Each of these relations determines a certain partially ordered set of degrees. We consider some questions concerning the algebraic structure of these posets and the interlocation of various degrees.
@article{MT_2002_5_1_a7,
author = {S. Yu. Podzorov},
title = {Relative {Complexity} for {Computable} {Representations} of {the~Conventional} {Linear} {Order} on {the~Set} of {Naturals}},
journal = {Matemati\v{c}eskie trudy},
pages = {114--128},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a7/}
}
TY - JOUR AU - S. Yu. Podzorov TI - Relative Complexity for Computable Representations of the~Conventional Linear Order on the~Set of Naturals JO - Matematičeskie trudy PY - 2002 SP - 114 EP - 128 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a7/ LA - ru ID - MT_2002_5_1_a7 ER -
S. Yu. Podzorov. Relative Complexity for Computable Representations of the~Conventional Linear Order on the~Set of Naturals. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 114-128. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a7/