Homogeneous Models of Locally Modular Theories of Finite Rank
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We specify several conditions under which $\lambda$-homogeneity for small $\lambda$'s implies homogeneity.
@article{MT_2002_5_1_a4,
     author = {K. Zh. Kudaibergenov},
     title = {Homogeneous {Models} of {Locally} {Modular} {Theories} of {Finite} {Rank}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a4/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - Homogeneous Models of Locally Modular Theories of Finite Rank
JO  - Matematičeskie trudy
PY  - 2002
SP  - 74
EP  - 83
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a4/
LA  - ru
ID  - MT_2002_5_1_a4
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T Homogeneous Models of Locally Modular Theories of Finite Rank
%J Matematičeskie trudy
%D 2002
%P 74-83
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_1_a4/
%G ru
%F MT_2002_5_1_a4
K. Zh. Kudaibergenov. Homogeneous Models of Locally Modular Theories of Finite Rank. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 74-83. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a4/

[1] Kudaibergenov K. Zh., “Ob odnorodnykh modelyakh odnorazmernostnykh teorii”, Algebra i logika, 34:1 (1995), 61–78 | MR | Zbl

[2] Kudaibergenov K. Zh., “Ob odnorodnykh modelyakh nekotorykh slabo minimalnykh teorii”, Sib. mat. zhurn., 40:6 (1999), 1253–1259 | MR | Zbl

[3] Kudaibergenov K. Zh., “Ob atomnykh modelyakh”, Mat. trudy, 3:2 (2000), 111–128 | MR

[4] Baldwin J. T., “The spectrum of resplendency”, J. Symbolic Logic, 55:2 (1990), 626–636 | DOI | MR | Zbl

[5] Buechler S., “Recursive definability and resplendency in $\omega$-stable theories”, Israel J. Math., 49 (1984), 26–34 | DOI | MR

[6] Buechler S., “Locally modular theories of finite rank”, Ann. Pure Appl. Logic, 30 (1986), 83–94 | DOI | MR | Zbl

[7] Keisler H. J., Morley M. D., “On the number of homogeneous models of a given power”, Israel J. Math., 5 (1967), 73–78 | DOI | MR | Zbl

[8] Kudaibergenov K. Zh., “Homogeneous models of stable theories”, Siberian Adv. Math., 3:3 (1993), 56–88 | MR

[9] Shelah S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl

[10] Shelah S., Buechler S., “On the existence of regular types”, Ann. Pure Appl. Logic, 45:3 (1989), 277–308 | DOI | MR | Zbl