The Rate of Convergence for Weighted Branching Processes
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 18-45

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a normed branching process $W_n$, generalizing the classical Galton–Watson model, in which particles have random weights (not necessarily positive). It is assumed that the weight of the parent particle is included into the weight of each of its offspring as a factor. The convergence rate of $W_n$ to its limit $W$ is evaluated. We give conditions in terms of the factors such that $W$ belongs to the domain of attraction (or to the domain of normal attraction) of an $\alpha$-stable distribution with $\alpha\in(1,2]$.
@article{MT_2002_5_1_a1,
     author = {V. A. Vatutin and U. R\"osler and V. A. Topchii},
     title = {The {Rate} of {Convergence} for {Weighted} {Branching} {Processes}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {18--45},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - U. Rösler
AU  - V. A. Topchii
TI  - The Rate of Convergence for Weighted Branching Processes
JO  - Matematičeskie trudy
PY  - 2002
SP  - 18
EP  - 45
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/
LA  - ru
ID  - MT_2002_5_1_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A U. Rösler
%A V. A. Topchii
%T The Rate of Convergence for Weighted Branching Processes
%J Matematičeskie trudy
%D 2002
%P 18-45
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/
%G ru
%F MT_2002_5_1_a1
V. A. Vatutin; U. Rösler; V. A. Topchii. The Rate of Convergence for Weighted Branching Processes. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 18-45. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/