Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2002_5_1_a1, author = {V. A. Vatutin and U. R\"osler and V. A. Topchii}, title = {The {Rate} of {Convergence} for {Weighted} {Branching} {Processes}}, journal = {Matemati\v{c}eskie trudy}, pages = {18--45}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/} }
V. A. Vatutin; U. Rösler; V. A. Topchii. The Rate of Convergence for Weighted Branching Processes. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 18-45. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/
[1] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye sluchainye velichiny, Nauka, M., 1965
[2] Rosler U., Topchii V. A., Vatutin V. A., “Usloviya skhodimosti vetvyaschikhsya protsessov s chastitsami, imeyuschimi ves”, Diskretnaya matematika, 12:1 (2000), 7–23
[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1984
[4] Shiryaev A. N., Veroyatnost, 2-e izd., Nauka, M., 1989
[5] Asmussen S., Hering H., Branching Processes, Progress in Probability and Statistics, Birkhäuser, Boston; Basel; Stuttgart, 1983 | MR | Zbl
[6] Athreya K. B., Ney P. E., Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, 196, Springer-Verlag, New York; Heidelberg, 1972 | MR | Zbl
[7] Biggins J. D., “Martingale convergence in the branching random walk”, J. Appl. Probab., 14:1 (1977), 25–37 | DOI | MR | Zbl
[8] Biggins J. D., Kyprianou A. E., “Seneta–Heyde norming in the branching random walk”, Ann. Probab., 25:1 (1997), 337–360 | DOI | MR | Zbl
[9] Bingham N. H., Doney R. A., “Asymptotic properties of supercritical branching processes. I: The Galton–Watson process”, Adv. in Appl. Probab., 6:4 (1974), 711–731 | DOI | MR | Zbl
[10] Bingham N. H., Doney R. A., “Asymptotic properties of supercritical branching processes. II: Crump–Mode and Jirina processes”, Adv. in Appl. Probab., 7:1 (1975), 66–82 | DOI | MR
[11] Heyde S. S., “A rate of convergence result for the supercritical Galton–Watson process”, J. Appl. Probab., 7:2 (1970), 451–454 | DOI | MR | Zbl
[12] Heyde S. S., “Some central limit analogues for supercritical Galton–Watson processes”, J. Appl. Probab., 8:1 (1971), 52–59 | DOI | MR | Zbl
[13] Liu Q., “On generalized multiplicative cascades”, Stochastic Process. Appl., 86:2 (2000), 263–286 | DOI | MR | Zbl
[14] de Meyer A., “On a theorem of Bingham and Doney”, J. Appl. Probab., 19:1 (1982), 217–220 | DOI | MR | Zbl
[15] Rösier U., “The weighted branching process”, Dynamics of Complex and Irregular Systems, Bielefeld Encounters in Mathematics and Physics, VIII, World Sci. Publishing, River Edge, NJ, 1993, 154–165 | MR
[16] Seneta E., Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, New York, 1976 | MR | Zbl