The Rate of Convergence for Weighted Branching Processes
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 18-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a normed branching process $W_n$, generalizing the classical Galton–Watson model, in which particles have random weights (not necessarily positive). It is assumed that the weight of the parent particle is included into the weight of each of its offspring as a factor. The convergence rate of $W_n$ to its limit $W$ is evaluated. We give conditions in terms of the factors such that $W$ belongs to the domain of attraction (or to the domain of normal attraction) of an $\alpha$-stable distribution with $\alpha\in(1,2]$.
@article{MT_2002_5_1_a1,
     author = {V. A. Vatutin and U. R\"osler and V. A. Topchii},
     title = {The {Rate} of {Convergence} for {Weighted} {Branching} {Processes}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {18--45},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - U. Rösler
AU  - V. A. Topchii
TI  - The Rate of Convergence for Weighted Branching Processes
JO  - Matematičeskie trudy
PY  - 2002
SP  - 18
EP  - 45
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/
LA  - ru
ID  - MT_2002_5_1_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A U. Rösler
%A V. A. Topchii
%T The Rate of Convergence for Weighted Branching Processes
%J Matematičeskie trudy
%D 2002
%P 18-45
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/
%G ru
%F MT_2002_5_1_a1
V. A. Vatutin; U. Rösler; V. A. Topchii. The Rate of Convergence for Weighted Branching Processes. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 18-45. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a1/

[1] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye sluchainye velichiny, Nauka, M., 1965

[2] Rosler U., Topchii V. A., Vatutin V. A., “Usloviya skhodimosti vetvyaschikhsya protsessov s chastitsami, imeyuschimi ves”, Diskretnaya matematika, 12:1 (2000), 7–23

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1984

[4] Shiryaev A. N., Veroyatnost, 2-e izd., Nauka, M., 1989

[5] Asmussen S., Hering H., Branching Processes, Progress in Probability and Statistics, Birkhäuser, Boston; Basel; Stuttgart, 1983 | MR | Zbl

[6] Athreya K. B., Ney P. E., Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, 196, Springer-Verlag, New York; Heidelberg, 1972 | MR | Zbl

[7] Biggins J. D., “Martingale convergence in the branching random walk”, J. Appl. Probab., 14:1 (1977), 25–37 | DOI | MR | Zbl

[8] Biggins J. D., Kyprianou A. E., “Seneta–Heyde norming in the branching random walk”, Ann. Probab., 25:1 (1997), 337–360 | DOI | MR | Zbl

[9] Bingham N. H., Doney R. A., “Asymptotic properties of supercritical branching processes. I: The Galton–Watson process”, Adv. in Appl. Probab., 6:4 (1974), 711–731 | DOI | MR | Zbl

[10] Bingham N. H., Doney R. A., “Asymptotic properties of supercritical branching processes. II: Crump–Mode and Jirina processes”, Adv. in Appl. Probab., 7:1 (1975), 66–82 | DOI | MR

[11] Heyde S. S., “A rate of convergence result for the supercritical Galton–Watson process”, J. Appl. Probab., 7:2 (1970), 451–454 | DOI | MR | Zbl

[12] Heyde S. S., “Some central limit analogues for supercritical Galton–Watson processes”, J. Appl. Probab., 8:1 (1971), 52–59 | DOI | MR | Zbl

[13] Liu Q., “On generalized multiplicative cascades”, Stochastic Process. Appl., 86:2 (2000), 263–286 | DOI | MR | Zbl

[14] de Meyer A., “On a theorem of Bingham and Doney”, J. Appl. Probab., 19:1 (1982), 217–220 | DOI | MR | Zbl

[15] Rösier U., “The weighted branching process”, Dynamics of Complex and Irregular Systems, Bielefeld Encounters in Mathematics and Physics, VIII, World Sci. Publishing, River Edge, NJ, 1993, 154–165 | MR

[16] Seneta E., Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, New York, 1976 | MR | Zbl